Palm oil contains carotenoid and vitamin E which possess antioxidant properties. A long exposure of heat and chemical substances during the purification process may lower antioxidant activity. This research was conducted to compare antioxidant activity of carotenoid and vitamin E obtained from each stage of three continuous purification process (transesterification, solvolytic micellization, and saponification). Total carotenoid concentration was analyzed by UV-visible spectrophotometer at λ 446 nm and total vitamin E concentration was analyzed by high-performance liquid chromatography, while ester and triglyceride concentration were analyzed by gas chromatography. Antioxidant activity was measured by DPPH assay with incubation time in 60 minutes. The highest concentration of carotenoid (229,968 mcg/ml) was extracted from saponification process, yet the highest concentration of vitamin E (97.64 mcg/ml) was extracted from transesterification process. The highest antioxidant activity of carotenoids and vitamin E was obtained from the transesterification process, while other processes had lower antioxidant activity, so it can be concluded that exposure to heat and excessive chemical substances couldimpact on antioxidant activity.

Bahasa Abstract

Minyak kelapa sawit mengandung beberapa komponen minor yang memiliki aktivitas antioksidan, seperti karotenoid dan vitamin E. Pada proses pemurnian adanya paparan panas dan bahan kimia yang terlalu banyak dapat menurunkan aktivitas antioksidan. Penelitian ini bertujuan untuk membandingkan aktivitas antioksidan dari karotenoid dan vitamin E yang diperoleh dari setiap tahap pada proses pemurnian berkelanjutan (transesterifikasi, solvolitik miselisasi dan saponifikasi). Kadar total karotenoid ditentukan dengan menggunakan spektrofotometri UV-visibel pada λ 446 nm dan total vitamin E dianalisis dengan kromatografi cair kinerja tinggi, sedangkan analisis kandungan ester dan trigliserida dianalisis dengan kromatografi gas. Aktivitas antioksidan diuji dengan metode DPPH dengan masa inkubasi selama 60 menit. Hasil aktivitas antioksidan menunjukkan bahwa karotenoid dan vitamin E pada proses transesterifikasi lebih kuat dibandingkan proses solvolitik miselisasi dan saponifikasi dengan nilai IC50 secara berurutan 5,61; 11,20; dan 11,63 mcg/ml. Hasil ekstraksi karotenoid sangat tinggi diperoleh pada proses saponifikasi sekitar 229.968 mcg/ml, sedangkan kandungan vitamin E tertinggi diperoleh pada proses solvolitik miselisasi sekitar 97,64 mcg/ml. Aktivitas antioksidan tertinggi dari karotenoid dan vitamin E diperoleh dari proses transesterifikasi sedangkan proses lainnya mempunyai aktivitas antioksidan yang rendah, sehingga dapat disimpulkan bahwa paparan panas dan bahan kimia yang berlebihan berdampak pada aktivitas antioksidan.


Bayerl, C. 2008. Β-carotene in dermatology: Does it help?. Acta Dermatovenerol Alp Pannonica Adriat.17(4): 160-2, 164-6

Boon, C.S., D.J. McClements., J.Weiss, , and E.A. Decker., 2010. Factors Influencing the Chemical Stability of Carotenes in Foods. Critical Reviews in Food Science and Nutrition. 50:515-532

Chang W. C., S.C. Kim., S.S. Hwang., B.K. Choi., H.J. Ahn., M.Y. Lee., S.H. Park., and S.K. Kim., 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science. 163: 1161-1168

Choo, Y.M., 2000. Specialty Products Carotenoids. Advances In Oil Palm Research Vol II. (Editor: Y. Basiron, B.S. Jalani, and K.W. Chan) Malaysia Palm Oil Board. pp 1036-1060.1Mukherjee, S., and A. Mitra., 2009. Health Effects of Palm Oil. J. Hum. Ecol. 26(3): 97-203.

Chichili, G.R., D. Nohr., M. Schaffer., J.V. Lintig., and H.K. Biesalski., 2005. β-Carotene Conversion into Vitamin A in Human Retinal Pigment Epithelial Cells. Investigative Ophthalmology & Visual Science. 46(10): 3562-3569

Chichili, G.R., D. Nohr., J. Frank., A. Flaccus, P.D. Fraser, and E.M.A. Enfissi., 2006. Protective effectsof tomato extract with elevated β-carotene levels on oxidative stress in ARPE-19 cells. Br J Nutr. 96: 643-649

Dauqan, E.M.A., H.A. Sani., A. Abdullah., Z.M. Kasim., 2011. Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography. 2nd International Conference on Chemistry and Chemical Engineering. Singapore

Estiasih, T., K. Ahmadi, T.D. Widyaningsih., J.M. Maligan., A.Z. Mubarok., E. Zubaidah., J. Mukhlisiyyah, and R, Puspitasari., 2013. Bioactive Compounds of Palm Fatty Acid Distillate (PFAD) from Several Palm Oil Refineries. Advance Journal of Food Science and Technology. 5(9): 1153-11592

Njoku, P.C., M.O. Egbukole, and C.K. Enenebeaku., 2010. Physio-Chemical Characteristics and Dietary Metal Levels of Oil from Elaeis guineensis Species. Pakistan Journal of Nutrition. 9(2): 137-140

Gunstone, F.D., 2002. Vegetables Oils In Food Technology: Composition, Properties and Uses. New York: Blackwell Publishing Ltd. Pages 76.

Gurav, S., N. Deskhar., V. Gulkari., N. Durangkar., dan A. Patil., (2007). Free Radical Scavengeng Activity of Polygala chinensis Linn. Pharmacology online. 2:245-253

Hájek, M and F. Skopal., 2009. Purification Of The Glycerol Phase After Transesterification Of Vegetable Oils. 44th International Petroleum Conference, Bratislava, Slovak Republic. September 21-22. 1-6.

Hamid, M.A and N. Moustafa., 2014. Amelioration of alloxan-induced diabetic keratopathy by β--carotene. Experimental and Toxicologic Pathology. 66: 49– 59

Hasibuan, H.A., T. Herawan., and M. Rivani., 2012. Recovery of Palm Fatty Acid Alkyl Ester by Short Part Distillation. International Oil Palm Conference. 345-353

Izbaim, D., B. Faiz., A. Moudden., N. Taifi., and A. Hamine., 2009. Use of Ultrasonic’s for the quality assesment of frying oil. Int J of Signal System Control and Eng app. 2(2):35-39

Khalid, K., and K. Khalid., 2011. Transesterification of Palm Oil for the Production of Biodiesel. American Journal of Applied Sciences. 8(8): 804-809.

Kosasih. 2004. Peranan antioksidan pada Lanjut Usia. Jakarta: Pusat Kajian Nasional masalah Lanjut Usia. Hal 15.

Lamria, M., T.H. Soerawidjaja., and D. Siahaan., 2006. Solvolytic Micellization in carotene recovery from palm biodiesel. Proceding International Oil Palm Conference. Bali, Indonesia. 330-338.

Leung, I.Y., M.M. Sandstrom, C.I. Zucker, Neuringer, M., and D. Max Snodderly., 2005. Nutritional manipulation of primate retinas. IV. Effects of n-3 fatty acids, lutein, andzeaxanthin on S-cones and rods in the foveal region. Exp Eye Res. 81:513-5295

Nnaji, L.C., I.F. Okonkwo., B.O. Solomon., and O.C. Onyia., 2013. Comparative Study of β-Carotene Content of Egg Yolk of Poultry. Inter J Ari Biosci. 2(1):1-3

Levin, G., and S. Mokady., 1994. Antioxidant activity of 9-cis compared to all-trans β--carotene in vitro. Free Radic Biol Med. 17(1): 77-82

Masni., 2004. Kajian Pemanfaatan Limbah Pabrik kelapa Sawit sebagai Sumber Karotenoid. Disertasi. Institut Pertanian Bogor. Bogor.

MPOB. 2005. MPOB TEST METHOD: A Compendium of Test on Palm Oil Products, Palm Kernel Products, Fatty Acids, Food Related Products and Other.

Othman, N., Z.A. Manan., S.R. Wan Alwi., and M.R. Sarmidi., 2010. A Review of Extraction Technology for Carotenoids and Vitamin E Recovery from Palm Oil. Journal of Applied Sciences. 10: 1187-1191

Palozza, P., S. Verdecchia., L. Avanzi., S. Vertuani., S. Serini., A. Iannone., and S. Manfredini., 2006. Comparative antioxidant activity of tocotrienols and the novel chromanyl-polyisoprenyl molecule FeAox-6 in isolated membranes and intact cells. Mol Cell Biochem. 287(1-2):21-32

Panjaitan, F. R., D. Siahaan., T. Herawan., M. Rivani., dan H. A. Hasibuan., 2008. Studi Awal Penjumputan Karoten Sawit dengan Teknik Solvolytic Micellization Menggunakan Pelarut Mayor Etanol. J. penelitian Kelapa Sawit.16(3):163-170.

Panpipat, W., and M. Chaijan., 2011. Extraction and free radical scavenging activity of crude carotenoids from palm oil meal. As. J. Food Ag-Ind. 4(6): 382-387.

Puah, C.W., Y.M. Choo., A.N. Ma., and C.H. Chuah., 2007. Solubility of tocopherols and tocotrienols from palm oil in supercritical carbon dioxide. J. Food Lipids. 14: 377-385.

Rivani, M., F.R. Panjaitan., H.A. Hasibuan., D. Siahaan., dan T. Herawan., 2009. Optimasi Penjumputan Karotenoid Dari Metil Ester Sawit Dengan Proses Solvolytic Micellization. J. Pen. Kelapa Sawit. 17(1): 30-36

Robertson, R.P., J. Harmon., P.O. Tran., Y. Tanaka., and H. Takahashi., 2003. Glucose toxicity in β--cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 52: 1–7.

Rubalya, V.S., and P. Neelamegam., 2012. Antioxidant potential in vegetable oil. Res. J. Chem. Environ. 16(2): 87-94

Sinaga, A.G.S., J. Reveny., dan Muchlisyam. 2012. Formulasi Gel Antioksidan Ekstrak Bawang Sabrang (Eleutherine palmifolia (L.) Merr.) Menggunakan Basis HPMC 4000. 3rd Pharmacy Update.

Stahl, W., and H. Sies., 2003. Antioxidant activity of carotenoids. Molecular Aspects of Medicine. 24: 345-351

Takahashi, H., Tran., E. LeRoy., J.S. Harmon., Y. Tanaka., and Robertson., 2004. d-Glyceraldehyde causes production of intracellular peroxide in pancreatic islets, oxidative stress, and defective-cell function via non-mitochondrial pathways. J Biol Chem. 279:16-23

Vardi, N., H.Parlakpinar, A.Cetin, A.Erdogan, and X. Ozturk., 2010. Protective Effect of β-Carotene on Methotrexate-Induced Oxidative Liver Damage. Toxicol Pathol. 38:592-597

Yeh, S.H., and M.L. Hu., 2003. Oxidized β-carotene inhibits gap junction intercellular communi-cation in the human lung adenocarcinoma cell line A549. Food Chem Toxicol. 41:1677–84.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.