Abstract
Valsartan, Biopharmaceutical Classification System (BCS) class II drug, exhibits pH-dependent solubility in the gastrointestinal tract, which increases at pH levels above 5. Its low solubility results in a bioavailability of only 23%, necessitating efforts to enhance it. This study aims to improve the solubility of valsartan using a solid dispersion system. Polyvinylpyrrolidone/vinyl acetate 64 (PVP VA 64), a hydrophilic polymer, was incorporated to inhibit the recrystallization of valsartan, while poloxamer 188 and poloxamer 407, used as surfactants, aimed to enhance valsartan’s solubility and intrinsic dissolution rate. Valsartan solid dispersions were prepared using the spray drying method, and the optimal formulation was determined using the Simplex Lattice Design (SLD). The composition of PVP VA 64, poloxamer 188, and poloxamer 407 were optimized factors, while saturated solubility, melting point, and intrinsic dissolution rate at pH 1.2 and 4.5 as optimized responses. The valsartan solid dispersions were characterized using Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Powder X-Ray Diffractometry (PXRD), and Scanning Electron Microscopy (SEM). The optimal composition of the valsartan solid dispersion was 40 mg of valsartan, 100 mg of PVP VA 64, 10 mg of poloxamer 188, and 30 mg of poloxamer 407. The results indicated that the solubility of valsartan solid dispersion was 27 times higher than that of the pure drug. Furthermore, the intrinsic dissolution rate of the valsartan solid dispersion at pH 1.2 and 4.5 exceeded that of pure valsartan.
References
Abbaspour, M., Iraji, P., Mahmoudi, Z., Rahiman, N., & Akhgari, A. (2021). Design and physico-mechanical evaluation of fast-dissolving valsartan polymeric drug delivery system by electrospinning method. Iranian Journal of Basic Medical Sciences, 24(12): 1683–1694.
Albaqami, J., Myles E, L., Tiriveedhi, V., Boadi, W., & Driggins S, N. (2018). The Effect of Onosma bracteatum in cancer cells. MOJ Bioequivalence & Bioavailability, 5(6).
Batisai, E., Ayamine, A., Kilinkissa, O. E. Y., & Báthori, N. B. (2014). Melting point- solubility-structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm, 16(43), 9992-9998
Chan, S. Y., Chung, Y. Y., Cheah, X. Z., Tan, E. Y. L., & Quah, J. (2015). The characterization and dissolution performances of spray dried solid dispersion of ketoprofen in hydrophilic carriers. Asian Journal of Pharmaceutical Sciences, 10(5), 372–385.
Chella, N. (2016). Formulation and Pharmacokinetic Evaluation of Polymeric Dispersions Containing Valsartan. European Journal of Drug Metabolisme and Pharmacokinetics, 41(5), pp. 517-526
Davis, M. T., Potter, C. B., Mohammadpour, M., Albadarin, A. B., & Walker, G. M. (2017). Design of spray dried ternary solid dispersions comprising itraconazole, soluplus and HPMCP: Effect of constituent compositions. International Journal of Pharmaceutics, 519(1–2), 365–372.
Ekdahl, A., Mudie, D., Malewski, D., Amidon, G., & Goodwin, A. (2019). Effect of Spray- Dried Particle Morphology on Mechanical and Flow Properties of Felodipine in PVP VA 64 Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 108(11), 3657–3666.
Flesch G, Muller PH, Lloyd P. (1997). Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. European Journal of Clinical Pharmacology, 52:115–20.
Hart, L.M. (2013). Brief overview of various approaches to enhance drug solubility. Journal of Developing Drugs, 02(03).
Hidayah, A. N., Wati, A. A., Yuniarti, N., & Laksitorini, M. D. (2023). The Development of alternative dosage form for creatine monohydrate: A floating tablet. Journal of Food and Pharmaceutical Sciences, 11(3), 889-899
Hidayat, I.R., Zuhrotun, A. and Sopyan, I., (2021). Design-expert software sebagai alat optimasi formulasi sediaan farmasi. Majalah Farmasetika, 6(1), pp.99-120.
Kumar, A., Davern, P., Hodnett, B.K., Hudson, S.P., (2019). Carrier particle mediated stabilization and isolation of valsartan nanoparticles. Colloids Surfaces B Biointerfaces, 175, 554–563.
Laksitorini, M. D., Suryani, L. U., Muhammad, F. R., & Purnomo, H. (2023). Application of hildebrand solubility parameter to identify ethanol-free co-solvent for pediatric formulation. Indonesian Journal of Pharmacy Indonesian, 34(2)
Leuner, C. and Dressman, J. (2000). Improving drug solubility for oral delivery using solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 50, 47-60.
Liao, J. B., Liang, Y. Z., Chen, Y. L., Xie, J. H., Liu, W. H., Chen, J. N., Lai, X. P., & Su, Z. R. (2015). Novel patchouli alcohol ternary solid dispersion pellets prepared by poloxamers. Iranian journal of pharmaceutical research : IJPR, 14(1), 15–26
Lu, Y., Chen, J., Yi, S., & Xiong, S. (2019). Enhanced felodipine dissolution from high drug loading amorphous solid dispersions with PVP/VA and sodium dodecyl sulfate. Journal of Drug Delivery Science and Technology, 53.
Medarevic, D. P., Kachrimanis, K., Mitric, M., Djuris, J., Djuric, Z., & Ibric, S. (2016). Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. Pharmaceutical Development and Technology, 21(3): 268–276.
Medarević, D., Cvijić, S., Dobričić, V., Mitrić, M., Djuriš, J., & Ibrić, S. (2018). Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach. European Journal of Pharmaceutical Sciences : official journal of the European Federation for Pharmaceutical Sciences, 124, 188–198. https://doi.org/10.1016/j.ejps.2018.08.026
Meng, F., Gala, U., and Chauhan, H. (2015). Classification of solid dispersions:Correlation to (I) stability and solubility (II) preparation and characterization techniques. Drug Development and Industrial Pharmacy, 41(9): 1401-1415
Nalluri,B.N., Krishna, R.M., Rao,T.P., P.A. Crooks. (2012). Effect of recrystallization on the pharmaceutical properties of valsartan for improved therapeutic efficacy, Journal of Applied Pharmaceutical Science, 2(10):126–132.
Pradhan, R., Kim, S. Y., Yong, C. S., & Kim, J. O. (2016). Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles. Asian Journal of Pharmaceutical Sciences, 11(6), 744–750.
Prapti Desai, Nitin Deshmukh, Apeksha Rajguru, Rohini Khedkar, & Rahul Jadhav. (2023). Formulation and evaluation of valsartan solid dispersion for improvement of dissolution profile. World Journal of Biology Pharmacy and Health Sciences, 15(2), 208–224.
Ramya Devi D, Sandhya P, Vedha Hari BN.(2013). Poloxamer: A novel functional molecule for drug delivery and gene therapy. Journal of Pharmaceutical Sciences and Research, 5(8):159–165. ISSN:0975–1459
Rukhman, I., E. Flyaks., Koltai,T. J. Aronhime. (2008). Amorphous form of valsartan. European Patent Specification. EP 1950204 A1. Journal of Applied Pharmaceutical Science, 2 (10):126–132. Journal of the Chilean Chemical Society, Vol. 58
Rukhman, I., Flyaks, E., Koltai,T. J. Aronhime. (2006). Polymorphs of valsartan. United States Patent US 7:105-557.
Saha, S. K., Joshi, A., Singh, R., Jana, S., & Dubey, K. (2023). An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. Journal of Drug Delivery Science and Technology, 81
Seftian, M., Laksitorini, M. D., & Sulaiman, T. N. S. (2024). Drug solubility enhancement strategies using amorphous solid dispersion: Examination on type and the amount of the polymer. Indonesian Journal of Pharmaceutical Science and Technology, 11(2), 186-195.
Sharma, A., Prakash Jain, C., & Singh Tanwar, Y. (2013). Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. In Journal of the Chilean Chemical Society, 58
Shi, X., Huang, W., Xu, T., Fan, B., & Sheng, X. (2020). Investigation of drug–polymer miscibility and solubilization on meloxicam binary solid dispersion. Journal of Pharmaceutical Innovation, 15(1): 125–137.
Skotnicki, M., Gaweł, A., Cebe, P., & Pyda, M. (2013). Thermal behavior and phase identification of Valsartan by standard and temperature-modulated differential scanning calorimetry. Drug development and industrial pharmacy, 39(10), 1508–1514. https://doi.org/10.3109/03639045.2012.704379
Song, C. K., Yoon, I. S., & Kim, D. D. (2016). Poloxamer-based solid dispersions for oral delivery of docetaxel: Differential effects of F68 and P85 on oral docetaxel bioavailability. International Journal of Pharmaceutics, 507(1–2), 102–108.
Surwase, S.A., Itkonen, L., Aaltonen, J., Saville, D., Rades, T., Peltonen, L., Strachan, C.J., (2015). Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. European Journal of Pharmaceutics and Biopharmaceutics, 96, 32–43. https://doi.org/10.1016/j.ejpb.2015.06.005
Szafraniec-Szczęsny, J., Antosik-Rogóż, A., Kurek, M., Gawlak, K., Górska, A., Peralta, S., Knapik-Kowalczuk, J., Kramarczyk, D., Paluch, M., & Jachowicz, R. (2021). How does the addition of kollidon®va64 inhibit the recrystallization and improve ezetimibe dissolution from amorphous solid dispersions? Pharmaceutics, 13(2), 1–15.
Tian, Y., Jones, D. S., & Andrews, G. P. (2015). An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Molecular Pharmaceutics, 12(4), 1180–1192.
Trunov, D., Francisco Wilson, J., Jeˇzkov´ a, M., Srom, ˇO., Beranek, J., Dammer, O., Soˇ o´ˇs, M. (2021). Monitoring of particle sizes distribution during Valsartan precipitation in the presence of nonionic surfactant. International Journal of Pharmaceutics, 600(1)
Turek, M., Różycka-Sokołowska, E., Koprowski, M., Marciniak, B., & Bałczewski, P. 2021. Role of hydrogen bonds in formation of co-amorphous valsartan/nicotinamide compositions of high solubility and durability with anti-hypertension and anti-COVID-19 potential. Molecular Pharmaceutics,18(5):1970–1984.
USP.(2011). ‘Apparent Intrinsic Dissolution’, in The United States Pharmacopeial. Rockville: The United States Pharmacopeial Convention, p. 660.
Wagh, V. T., Gilhotra, R. M., & Wagh, R. D. (2020). Solid dispersion (Kneading) technique: A platform for enhancement dissolution rate of valsartan poorly water soluble drug. International Journal of Pharmaceutical Quality Assurance, 11(1), 20–24.
Xu, W. J., Xie, H. J., Cao, Q. R., Shi, L. L., Cao, Y., Zhu, X. Y., & Cui, J. H. (2016). Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Delivery, 23(1): 41–48.
Xu, W., Sun, Y., Du, L., Chistyachenko, Y. S., Dushkin, A. v., & Su, W. (2018). Investigations on solid dispersions of valsartan with alkalizing agents: Preparation, characterization and physicochemical properties. Journal of Drug Delivery Science and Technology, 44, 399–405.
Yan, Y. D., Sung, J. H., Kim, K. K., Kim, D. W., Kim, J. O., Lee, B. J., Yong, C. S., &Choi, H. G. (2012). Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. International Journal of Pharmaceutics, 422(1–2): 202–210.
Recommended Citation
Cahyani, Sulastari; Saifullah Sulaiman, Teuku Nanda; and Laksitorini, Marlyn Dian
(2024)
"Application of PVP VA 64 and Poloxamer 188/407 in Solid Dispersion Technology for Improving Solubility of Valsartan,"
Pharmaceutical Sciences and Research: Vol. 11:
No.
2, Article 4.
DOI: 10.7454/psr.v11i2.1394
Available at:
https://scholarhub.ui.ac.id/psr/vol11/iss2/4
Included in
Natural Products Chemistry and Pharmacognosy Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Pharmaceutics and Drug Design Commons