Abstract
Gastroretentive Mucoadhesive Dosage Form (GMDF) is one type of Gastroretentive Drug Delivery System (GRDDS) technology designed to exploit the adhesiveness of dosage forms in the gastric mucosa. This aims to increase drug residence time, enhance drug solubility and absorption, and ultimately improve drug bioavailability and therapeutic effect. Various studies have explored the use of different polymers to develop GMDF systems and dosage forms. However, despite extensive research in this field, there are still limited GMDF products approved by the US FDA and INA FDA. Therefore, this review addresses the challenges in developing GMDF, its current state, and potential future opportunities. This literature review is performed by searching Google Scholar, PubMed, and ScienceDirect and Google Patents using the terms “gastroretentive”, “mucoadhesive”, “challenge”, “strategy”, and “patent.” Additionally, searches were conducted in the US FDA and INA FDA Drug Approval Databases. Based on our study, we identified numerous challenges in developing GMDF, including patient physiological challenges, drug formulas, production processes, product analysis, and clinical trials. To address these challenges, multiple strategies should be developed to optimize the formulation, production process, and product analysis of GMDF, ultimately leading to successful clinical trials and regulatory approval of this product.
References
Anjasmara, G. D., Hartrianti, P. & Iswandana, R. (2023). Colon targeted delivery dosage forms for probiotics: a review. Pharmaceutical Sciences and Research, 10(3). https://doi.org/10.7454/psr.v10i3.1323
Anupam, P., Ashwani, M., & Praveen, M. (2013). Formulation and evaluation of gastroretentive mucoadhesive films of captopril. Pharmacia, 1(2), 31-8.
Bahadur, S., Manisha, S., Baghel, P., Yadu, K., & Naurange, T. (2020). An overview on various types of gastroretentive drug delivery system. ScienceRise. Pharmaceutical Science, 0(6 (28)), 4–13. https://doi.org/10.15587/2519-4852.2020.211931
Bej, R., & Haag, R. (2022). Mucus-Inspired Dynamic Hydrogels: Synthesis and Future Perspectives. Journal of the American Chemical Society, 144(44), 20137–20152. https://doi.org/10.1021/jacs.1c13547
Blynskaya, E. V., Tishkov, S. V., Vinogradov, V. P., Alekseev, K. V., Marakhova, A. I., & Vetcher, A. A. (2022). Polymeric excipients in the technology of floating drug delivery systems. Pharmaceutics, 14(12), 2779. https://doi.org/10.3390/pharmaceutics14122779
Boddupalli, B. M., Mohammed, Z. N., Nath, R. A., & Banji, D. (2010). Mucoadhesive drug delivery system: An overview. Journal of Advanced Pharmaceutical Technology & Research, 1(4), 381–387. https://doi.org/10.4103/0110-5558.76436
Chen, N., Niu, J., Li, Q., Li, J., chen, X., Ren, Y., … Shi, Y. (2019). Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. Journal of Drug Delivery Science and Technology, 51, 485–492. https://doi.org/10.1016/j.jddst.2019.03.024
Darandale, S. S., & Vavia, P. R. (2012). Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release. Acta Pharmaceutica Sinica B, 2(5), 509-517. https://doi.org/10.1016/j.apsb.2012.05.004
Das, S., Kaur, S., & Rai, V. K. (2021). Gastro-retentive drug delivery systems: a recent update on clinical pertinence and drug delivery. Drug Delivery and Translational Research, 11(5), 1849–1877. https://doi.org/10.1007/s13346-020-00875-5
Debotton, N., & Dahan, A. (2016). Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Medicinal Research Reviews, 37(1), 52–97. https://doi.org/10.1002/med.21403
Dettmar, P. W., Dickson, P. A., Hampson, F. C., Jollife, I. G., & Peers, W. (2001). Mucoadhesive granules of carbomer suitable for oral administration of drugs (U.S. Patent No. 6306789). U.S. Patent and Trademark Office. https://patents.google.com/patent/US6306789B1/en?oq=US+6306789
Dhaliwal, S., Jain, S., Singh, H. P., & Tiwary, A. K. (2008). Mucoadhesive microspheres for gastroretentive delivery of acyclovir: In-vitro and in-vivo evaluation. The AAPS Journal, 10(2), 322–330. https://doi.org/10.1208/s12248-008-9039-2
Farhadnejad, H., Mortazavi, S. A., Jamshidfar, S., Rakhshani, A., Motasadizadeh, H., Fatahi, Y., Mahdieh, A., & Darbasizadeh, B. (2022). Montmorillonite-famotidine/chitosan bio-nanocomposite hydrogels as a mucoadhesive/gastroretentive drug delivery system. Iranian Journal of Pharmaceutical Research, 21(1), e127035. https://doi.org/10.5812/ijpr-127035
Frenning, G. (2011). Modelling drug release from inert matrix systems: From moving-boundary to continuous-field descriptions. International Journal of Pharmaceutics, 418(1), 88–99. doi:10.1016/j.ijpharm.2010.11.030
Gazzaniga, A., Moutaharrik, S., Filippin, I., Foppoli, A., Palugan, L., Maroni, A., & Cerea, M. (2022). Time-based formulation strategies for colon drug delivery. Pharmaceutics, 14(12), 2762. https://doi.org/10.3390/pharmaceutics14122762
Gilis, P. M. V. (2001). Bioadhesive solid dosage form (U.S. Patent No. 6303147). U.S. Patent and Trademark Office. https://patents.google.com/patent/US6303147B1/en?oq=US+6303147
Goldoozian, S., Mohylyuk, V., Dashevskiy, A., & Bodmeier, R. (2021). Gel strength of hydrophilic matrix tablets in terms of in vitro robustness. Pharmaceutical Research, 38(7), 1297–1306. https://doi.org/10.1007/s11095-021-03068-y
Hanafy, N. A., Leporatti, S., & El-Kemary, M. A. (2019). Mucoadhesive hydrogel nanoparticles as Smart Biomedical Drug Delivery System. Applied Sciences, 9(5), 825. https://doi.org/10.3390/app9050825
Hua S. (2020). Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Frontiers in Pharmacology, 11, 524. https://doi.org/10.3389/fphar.2020.00524
Ige, P. P., & Gattani, S. G. (2012). Design and in vitro and in vivo characterization of mucoadhesive matrix pellets of metformin hydrochloride for oral controlled release: a technical note. Archives of Pharmacal Research, 35(3), 487-498. https://doi.org/10.1007/s12272-012-0312-7
Ige, P. P., Rajput, P., Pardeshi, C., Kawade, R., Swami, B., Mahajan, H., ... & Gattani, S. (2013). Development of pellets of nifedipine using HPMC K15 M and κ-carrageenan as mucoadhesive sustained delivery system and in vitro evaluation. Iranian Polymer Journal, 22, 911-921. https://doi.org/10.1007/s13726-013-0192-9
Jahagirdar, H. A., Kulkarni, R., & Kulkarni, S. (2015). Pharmaceutical composition for the gastrointestinal drug delivery (U.S. Patent No. 8974825). U.S. Patent and Trademark Office. https://patents.google.com/patent/US8974825B2/en?oq=US+8974825
Jahagirdar, H. A., Kulkarni, R., & Kulkarni, S. (2018). Pharmaceutical compositions for gastrointestinal drug delivery (U.S. Patent No. 9931405). U.S. Patent and Trademark Office. https://patents.google.com/patent/US9931405B2/en?oq=US+9931405
Jain, S., & Sankar. (2013). Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study. Drug Design, Development and Therapy, 1455. https://doi.org/10.2147/DDDT.S52890
Jangdey, M. S., Gupta, A., & Sah, A. K. (2014). Gastro-retentive mucoadhesive nanoparticle for sustained drug delivery System. AJPRes, 4(2), 55-64. doi:10.5958/2231–5691
Johansson, M. E., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature reviews. Gastroenterology & Hepatology, 10(6), 352–361. https://doi.org/10.1038/nrgastro.2013.35
Karalia, D., Siamidi, A., Karalis, V., & Vlachou, M. (2021). 3D-Printed oral dosage forms: Mechanical properties, computational approaches and applications. Pharmaceutics, 13(9), 1401. https://doi.org/10.3390/pharmaceutics13091401
Katona, M. T., Kakuk, M., Szabó, R., Tonka-Nagy, P., Takács-Novák, K., & Borbás, E. (2022). Towards a better understanding of the post-gastric behavior of enteric-coated formulations. Pharmaceutical Research, 39(1), 201–211. https://doi.org/10.1007/s11095-021-03163-0
Khutoryanskiy, V. V. (2011). Advances in mucoadhesion and mucoadhesive polymers. Macromolecular Bioscience, 11(6), 748–764. https://doi.org/10.1002/mabi.201000388
Khutoryanskiy, V. V. (2014). Mucoadhesive Materials and Drug Delivery Systems. United States: John Wiley & Sons, Ltd.
Krygowska-Wajs, A., Cheshire, W. P., Jr, Wszolek, Z. K., Hubalewska-Dydejczyk, A., Jasinska-Myga, B., Farrer, M. J., Moskala, M., & Sowa-Staszczak, A. (2009). Evaluation of gastric emptying in familial and sporadic Parkinson disease. Parkinsonism & Related Disorders, 15(9), 692–696. https://doi.org/10.1016/j.parkreldis.2009.04.003
Kumar, M., & Kaushik, D. (2018). An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Patents on Drug Delivery & Formulation, 12. doi:10.2174/187221131266618030815
Lemieux, M., Gosselin, P., & Mateescu, M. A. (2015). Carboxymethyl starch mucoadhesive microspheres as gastroretentive dosage form. International Journal of Pharmaceutics, 496(2), 497–508. https://doi.org/10.1016/j.ijpharm.2015.10.027
Liu, L., Wu, D., Tu, H., Cao, M., Li, M., Peng, L., & Yang, J. (2023). Applications of hydrogels in drug delivery for oral and maxillofacial diseases. Gels (Basel, Switzerland), 9(2), 146. https://doi.org/10.3390/gels9020146
Lopes, C. M., Bettencourt, C., Rossi, A., Buttini, F., & Barata, P. (2016). Overview on gastroretentive drug delivery systems for improving drug bioavailability. International Journal of Pharmaceutics, 510(1), 144–158. https://doi.org/10.1016/j.ijpharm.2016.05.016
Mandal, U. K., Chatterjee, B., & Senjoti, F. G. (2016). Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian Journal of Pharmaceutical Sciences, 11(5), 575–584. doi:10.1016/j.ajps.2016.04.007
Mathiowitz, E., Chickering III, D. E. & Lehr, C. (1999). Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches, and Development. United States: CRC Press.
Maurer, J. M., Schellekens, R. C., van Rieke, H. M., Wanke, C., Iordanov, V., Stellaard, F., Wutzke, K. D., Dijkstra, G., van der Zee, M., Woerdenbag, H. J., Frijlink, H. W., & Kosterink, J. G. (2015). Gastrointestinal pH and transit time profiling in healthy volunteers using the intellicap system confirms ileo-colonic release of colopulse tablets. PloS one, 10(7), e0129076. https://doi.org/10.1371/journal.pone.0129076
Melhem, H., Regan-Komito, D., & Niess, J. H. (2021). Mucins dynamics in physiological and pathological conditions. International Journal of Molecular Sciences, 22(24), 13642. https://doi.org/10.3390/ijms222413642
Mishra, M. K. (2018). Concise Encyclopedia Of Biomedical Polymers And Polymeric Biomaterials. United States: CRC Press.
Panda, J., Rao, M.E., Swain, S., Patra, C.N., & Jena, B.R. (2022). Formulation development, optimization and characterization of mucoadhesive minitablets of cefuroxime axetil: in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Beni-Suef University Journal of Basic and Applied Sciences, 11. https://doi.org/10.1186/s43088-022-00303-2
Parojčić, J., Ðurić, Z., Jovanović, M., & Ibrić, S. (2004). An investigation into the factors influencing drug release from hydrophilic matrix tablets based on novel carbomer polymers. Drug Delivery, 11(1), 59–65. doi:10.1080/10717540490265379
Patil, S., & Talele, G. S. (2014). Gastroretentive mucoadhesive tablet of lafutidine for controlled release and enhanced bioavailability. Drug Delivery, 22(3), 312–319. https://doi.org/10.3109/10717544.2013.877099
Peppas, N. A., Thomas, J. B., & McGinty, J. (2009). Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. Journal of Biomaterials Science. Polymer edition, 20(1), 1–20. https://doi.org/10.1163/156856208X393464
Pund, S., Joshi, A., Vasu, K., Nivsarkar, M., & Shishoo, C. (2011). Gastroretentive delivery of rifampicin: In vitro mucoadhesion and in vivo gamma scintigraphy. International Journal of Pharmaceutics, 411(1-2), 106–112. doi:10.1016/j.ijpharm.2011.03.048
Qaiser, R., Pervaiz, F., Hanan, H., Shoukat, H., & Nadeem, M. (2023). Development of chondroitin sulfate-based mucoadhesive interpenetrating polymeric hydrogels of captopril with adjustable properties as gastro-retentive sustained drug release carriers. Polymer Bulletin, 1-27.
Raeisi, A., & Farjadian, F. (2024). Commercial hydrogel product for drug delivery based on route of administration. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1336717
Rault, I., & Pichon, G. (1999). Mucoadhesive pharmaceutical composition for the controlled release of active principles (U.S. Patent No. 5900247). U.S. Patent and Trademark Office. https://patents.google.com/patent/US5900247A/en?oq=US+5900247
Raval, A., Parikh, J., & Engineer, C. (2010). Mechanism of controlled release kinetics from medical devices. Brazilian Journal of Chemical Engineering, 27(2), 211–225. doi:10.1590/s0104-66322010000200001
Sankar, R., & Jain, S. K. (2013). Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study. Drug Design, Development and Therapy, 7, 1455–1469. https://doi.org/10.2147/DDDT.S52890
Santus, G., Bottoni, G., & Lazzarini, C. (1996). Controlled-release mucoadhesive pharmaceutical composition for the oral administration of furosemide (U.S. Patent No. 5571533). U.S. Patent and Trademark Office. https://patents.google.com/patent/US5571533A/en?oq=US+5571533
Santus, G., Bottoni, G., & Sala, G. (1995). Pharmaceutical controlled-release composition with bioadhesive properties (U.S. Patent No. 5472704). U.S. Patent and Trademark Office. https://patents.google.com/patent/US5472704A/en?oq=US+5472704
Shahi, P., Kumari, N., & Pathak, K. (2015). Microspheres and tablet in capsule system: A novel chronotherapeutic system of ketorolac tromethamine for site and time specific delivery. International Journal of Pharmaceutical Investigation, 5(3), 161–170. https://doi.org/10.4103/2230-973X.160854
Shaikh, R., Raj Singh, T. R., Garland, M. J., Woolfson, A. D., & Donnelly, R. F. (2011). Mucoadhesive drug delivery systems. Journal of Pharmacy & Bioallied Sciences, 3(1), 89–100. https://doi.org/10.4103/0975-7406.76478
Sharma, D., Singh, M., Kumar, D., & Singh, G. (2012). Novel Paradigms in Mucoadhesive Drug Delivery System. International Journal of Pharmaceutical Sciences and Research, 3(8), 24555-2471.
Shinde, S., Tadwee, I., & Shahi, S. (2011). Gastro retentive drug delivery system: A review. International Journal of Pharmaceutical Research and Allied Sciences 1(1), 01-13.
Sonani, N. G., Hiremath, S. P., Dasankoppa, F. S., Jamakandi, V. G., & Sreenivas, S. A. (2010). Design and evaluation of gastroretentive mucoadhesive cephalexin tablets. Pharmaceutical Development and Technology, 15(2), 178–183. https://doi.org/10.3109/10837450903085426
Triantafyllou, K., Kalantzis, C., Papadopoulos, A. A., Apostolopoulos, P., Rokkas, T., Kalantzis, N., & Ladas, S. D. (2007). Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 39(6), 575–580. https://doi.org/10.1016/j.dld.2007.01.024
Tripathi, Thapa, Maharjan, & Jeong. (2019). Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics, 11(4), 193. doi:10.3390/pharmaceutics11040193
Turac, I., Porfire, A., Iurian, S., Crișan, A. G., Casian, T., Iovanov, R., & Tomuță, I. (2024). Expanding the manufacturing approaches for gastroretentive drug delivery systems with 3D printing technology. Pharmaceutics, 16(6), 790. https://doi.org/10.3390/pharmaceutics16060790
Varma, M. V. S., Kaushal, A. M., Garg, A., & Garg, S. (2004). Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2(1), 43–57. doi:10.2165/00137696-200402010-00003
Vinchurkar, K., Sainy, J., Khan, M. A., Mane, S., Mishra, D. K., & Dixit, P. (2022). Features and facts of a gastroretentive drug delivery system-a review. Turkish Journal of Pharmaceutical Sciences, 19(4), 476–487. https://doi.org/10.4274/tjps.galenos.2021.44959
Vrettos, N. N., Roberts, C. J., & Zhu, Z. (2021). Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics, 13(10), 1591. https://doi.org/10.3390/pharmaceutics13101591
Wen, H., & Park, K. (2010). Oral Controlled Release Formulation Design and Drug Delivery (H. Wen & Park Kinam, Eds.). John Wiley & Sons, Inc.
Copyright @ 2024 by Authors. Published by Universitas Indonesia. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).
Recommended Citation
Akbar, Rayhan; Setiawan, Heri; Maggadani, Baitha Palanggatan; Iswandana, Raditya; and Setio Putri, Kurnia Sari
(2024)
"Challenges and Future Perspective of Gastroretentive Mucoadhesive Dosage Forms,"
Pharmaceutical Sciences and Research: Vol. 11:
No.
2, Article 1.
DOI: 10.7454/psr.v11i2.1387
Available at:
https://scholarhub.ui.ac.id/psr/vol11/iss2/1
Included in
Medicinal and Pharmaceutical Chemistry Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Pharmaceutics and Drug Design Commons