•  
  •  
 

Abstract

Gastroretentive Mucoadhesive Dosage Form (GMDF) is one type of Gastroretentive Drug Delivery System (GRDDS) technology designed to exploit the adhesiveness of dosage forms in the gastric mucosa. This aims to increase drug residence time, enhance drug solubility and absorption, and ultimately improve drug bioavailability and therapeutic effect. Various studies have explored the use of different polymers to develop GMDF systems and dosage forms. However, despite extensive research in this field, there are still limited GMDF products approved by the US FDA and INA FDA. Therefore, this review addresses the challenges in developing GMDF, its current state, and potential future opportunities. This literature review is performed by searching Google Scholar, PubMed, and ScienceDirect and Google Patents using the terms “gastroretentive”, “mucoadhesive”, “challenge”, “strategy”, and “patent.” Additionally, searches were conducted in the US FDA and INA FDA Drug Approval Databases. Based on our study, we identified numerous challenges in developing GMDF, including patient physiological challenges, drug formulas, production processes, product analysis, and clinical trials. To address these challenges, multiple strategies should be developed to optimize the formulation, production process, and product analysis of GMDF, ultimately leading to successful clinical trials and regulatory approval of this product.

References

Anjasmara, G. D., Hartrianti, P. & Iswandana, R. (2023). Colon targeted delivery dosage forms for probiotics: a review. Pharmaceutical Sciences and Research, 10(3). https://doi.org/10.7454/psr.v10i3.1323

Anupam, P., Ashwani, M., & Praveen, M. (2013). Formulation and evaluation of gastroretentive mucoadhesive films of captopril. Pharmacia, 1(2), 31-8.

Bahadur, S., Manisha, S., Baghel, P., Yadu, K., & Naurange, T. (2020). An overview on various types of gastroretentive drug delivery system. ScienceRise. Pharmaceutical Science, 0(6 (28)), 4–13. https://doi.org/10.15587/2519-4852.2020.211931

Bej, R., & Haag, R. (2022). Mucus-Inspired Dynamic Hydrogels: Synthesis and Future Perspectives. Journal of the American Chemical Society, 144(44), 20137–20152. https://doi.org/10.1021/jacs.1c13547

Blynskaya, E. V., Tishkov, S. V., Vinogradov, V. P., Alekseev, K. V., Marakhova, A. I., & Vetcher, A. A. (2022). Polymeric excipients in the technology of floating drug delivery systems. Pharmaceutics, 14(12), 2779. https://doi.org/10.3390/pharmaceutics14122779

Boddupalli, B. M., Mohammed, Z. N., Nath, R. A., & Banji, D. (2010). Mucoadhesive drug delivery system: An overview. Journal of Advanced Pharmaceutical Technology & Research, 1(4), 381–387. https://doi.org/10.4103/0110-5558.76436

Chen, N., Niu, J., Li, Q., Li, J., chen, X., Ren, Y., … Shi, Y. (2019). Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. Journal of Drug Delivery Science and Technology, 51, 485–492. https://doi.org/10.1016/j.jddst.2019.03.024

Darandale, S. S., & Vavia, P. R. (2012). Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release. Acta Pharmaceutica Sinica B, 2(5), 509-517. https://doi.org/10.1016/j.apsb.2012.05.004

Das, S., Kaur, S., & Rai, V. K. (2021). Gastro-retentive drug delivery systems: a recent update on clinical pertinence and drug delivery. Drug Delivery and Translational Research, 11(5), 1849–1877. https://doi.org/10.1007/s13346-020-00875-5

Debotton, N., & Dahan, A. (2016). Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Medicinal Research Reviews, 37(1), 52–97. https://doi.org/10.1002/med.21403

Dettmar, P. W., Dickson, P. A., Hampson, F. C., Jollife, I. G., & Peers, W. (2001). Mucoadhesive granules of carbomer suitable for oral administration of drugs (U.S. Patent No. 6306789). U.S. Patent and Trademark Office. https://patents.google.com/patent/US6306789B1/en?oq=US+6306789

Dhaliwal, S., Jain, S., Singh, H. P., & Tiwary, A. K. (2008). Mucoadhesive microspheres for gastroretentive delivery of acyclovir: In-vitro and in-vivo evaluation. The AAPS Journal, 10(2), 322–330. https://doi.org/10.1208/s12248-008-9039-2

Farhadnejad, H., Mortazavi, S. A., Jamshidfar, S., Rakhshani, A., Motasadizadeh, H., Fatahi, Y., Mahdieh, A., & Darbasizadeh, B. (2022). Montmorillonite-famotidine/chitosan bio-nanocomposite hydrogels as a mucoadhesive/gastroretentive drug delivery system. Iranian Journal of Pharmaceutical Research, 21(1), e127035. https://doi.org/10.5812/ijpr-127035

Frenning, G. (2011). Modelling drug release from inert matrix systems: From moving-boundary to continuous-field descriptions. International Journal of Pharmaceutics, 418(1), 88–99. doi:10.1016/j.ijpharm.2010.11.030

Gazzaniga, A., Moutaharrik, S., Filippin, I., Foppoli, A., Palugan, L., Maroni, A., & Cerea, M. (2022). Time-based formulation strategies for colon drug delivery. Pharmaceutics, 14(12), 2762. https://doi.org/10.3390/pharmaceutics14122762

Gilis, P. M. V. (2001). Bioadhesive solid dosage form (U.S. Patent No. 6303147). U.S. Patent and Trademark Office. https://patents.google.com/patent/US6303147B1/en?oq=US+6303147

Goldoozian, S., Mohylyuk, V., Dashevskiy, A., & Bodmeier, R. (2021). Gel strength of hydrophilic matrix tablets in terms of in vitro robustness. Pharmaceutical Research, 38(7), 1297–1306. https://doi.org/10.1007/s11095-021-03068-y

Hanafy, N. A., Leporatti, S., & El-Kemary, M. A. (2019). Mucoadhesive hydrogel nanoparticles as Smart Biomedical Drug Delivery System. Applied Sciences, 9(5), 825. https://doi.org/10.3390/app9050825

Hua S. (2020). Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Frontiers in Pharmacology, 11, 524. https://doi.org/10.3389/fphar.2020.00524

Ige, P. P., & Gattani, S. G. (2012). Design and in vitro and in vivo characterization of mucoadhesive matrix pellets of metformin hydrochloride for oral controlled release: a technical note. Archives of Pharmacal Research, 35(3), 487-498. https://doi.org/10.1007/s12272-012-0312-7

Ige, P. P., Rajput, P., Pardeshi, C., Kawade, R., Swami, B., Mahajan, H., ... & Gattani, S. (2013). Development of pellets of nifedipine using HPMC K15 M and κ-carrageenan as mucoadhesive sustained delivery system and in vitro evaluation. Iranian Polymer Journal, 22, 911-921. https://doi.org/10.1007/s13726-013-0192-9

Jahagirdar, H. A., Kulkarni, R., & Kulkarni, S. (2015). Pharmaceutical composition for the gastrointestinal drug delivery (U.S. Patent No. 8974825). U.S. Patent and Trademark Office. https://patents.google.com/patent/US8974825B2/en?oq=US+8974825

Jahagirdar, H. A., Kulkarni, R., & Kulkarni, S. (2018). Pharmaceutical compositions for gastrointestinal drug delivery (U.S. Patent No. 9931405). U.S. Patent and Trademark Office. https://patents.google.com/patent/US9931405B2/en?oq=US+9931405

Jain, S., & Sankar. (2013). Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study. Drug Design, Development and Therapy, 1455. https://doi.org/10.2147/DDDT.S52890

Jangdey, M. S., Gupta, A., & Sah, A. K. (2014). Gastro-retentive mucoadhesive nanoparticle for sustained drug delivery System. AJPRes, 4(2), 55-64. doi:10.5958/2231–5691

Johansson, M. E., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature reviews. Gastroenterology & Hepatology, 10(6), 352–361. https://doi.org/10.1038/nrgastro.2013.35

Karalia, D., Siamidi, A., Karalis, V., & Vlachou, M. (2021). 3D-Printed oral dosage forms: Mechanical properties, computational approaches and applications. Pharmaceutics, 13(9), 1401. https://doi.org/10.3390/pharmaceutics13091401

Katona, M. T., Kakuk, M., Szabó, R., Tonka-Nagy, P., Takács-Novák, K., & Borbás, E. (2022). Towards a better understanding of the post-gastric behavior of enteric-coated formulations. Pharmaceutical Research, 39(1), 201–211. https://doi.org/10.1007/s11095-021-03163-0

Khutoryanskiy, V. V. (2011). Advances in mucoadhesion and mucoadhesive polymers. Macromolecular Bioscience, 11(6), 748–764. https://doi.org/10.1002/mabi.201000388

Khutoryanskiy, V. V. (2014). Mucoadhesive Materials and Drug Delivery Systems. United States: John Wiley & Sons, Ltd.

Krygowska-Wajs, A., Cheshire, W. P., Jr, Wszolek, Z. K., Hubalewska-Dydejczyk, A., Jasinska-Myga, B., Farrer, M. J., Moskala, M., & Sowa-Staszczak, A. (2009). Evaluation of gastric emptying in familial and sporadic Parkinson disease. Parkinsonism & Related Disorders, 15(9), 692–696. https://doi.org/10.1016/j.parkreldis.2009.04.003

Kumar, M., & Kaushik, D. (2018). An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Patents on Drug Delivery & Formulation, 12. doi:10.2174/187221131266618030815

Lemieux, M., Gosselin, P., & Mateescu, M. A. (2015). Carboxymethyl starch mucoadhesive microspheres as gastroretentive dosage form. International Journal of Pharmaceutics, 496(2), 497–508. https://doi.org/10.1016/j.ijpharm.2015.10.027

Liu, L., Wu, D., Tu, H., Cao, M., Li, M., Peng, L., & Yang, J. (2023). Applications of hydrogels in drug delivery for oral and maxillofacial diseases. Gels (Basel, Switzerland), 9(2), 146. https://doi.org/10.3390/gels9020146

Lopes, C. M., Bettencourt, C., Rossi, A., Buttini, F., & Barata, P. (2016). Overview on gastroretentive drug delivery systems for improving drug bioavailability. International Journal of Pharmaceutics, 510(1), 144–158. https://doi.org/10.1016/j.ijpharm.2016.05.016

Mandal, U. K., Chatterjee, B., & Senjoti, F. G. (2016). Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian Journal of Pharmaceutical Sciences, 11(5), 575–584. doi:10.1016/j.ajps.2016.04.007

Mathiowitz, E., Chickering III, D. E. & Lehr, C. (1999). Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches, and Development. United States: CRC Press.

Maurer, J. M., Schellekens, R. C., van Rieke, H. M., Wanke, C., Iordanov, V., Stellaard, F., Wutzke, K. D., Dijkstra, G., van der Zee, M., Woerdenbag, H. J., Frijlink, H. W., & Kosterink, J. G. (2015). Gastrointestinal pH and transit time profiling in healthy volunteers using the intellicap system confirms ileo-colonic release of colopulse tablets. PloS one, 10(7), e0129076. https://doi.org/10.1371/journal.pone.0129076

Melhem, H., Regan-Komito, D., & Niess, J. H. (2021). Mucins dynamics in physiological and pathological conditions. International Journal of Molecular Sciences, 22(24), 13642. https://doi.org/10.3390/ijms222413642

Mishra, M. K. (2018). Concise Encyclopedia Of Biomedical Polymers And Polymeric Biomaterials. United States: CRC Press.

Panda, J., Rao, M.E., Swain, S., Patra, C.N., & Jena, B.R. (2022). Formulation development, optimization and characterization of mucoadhesive minitablets of cefuroxime axetil: in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Beni-Suef University Journal of Basic and Applied Sciences, 11. https://doi.org/10.1186/s43088-022-00303-2

Parojčić, J., Ðurić, Z., Jovanović, M., & Ibrić, S. (2004). An investigation into the factors influencing drug release from hydrophilic matrix tablets based on novel carbomer polymers. Drug Delivery, 11(1), 59–65. doi:10.1080/10717540490265379

Patil, S., & Talele, G. S. (2014). Gastroretentive mucoadhesive tablet of lafutidine for controlled release and enhanced bioavailability. Drug Delivery, 22(3), 312–319. https://doi.org/10.3109/10717544.2013.877099

Peppas, N. A., Thomas, J. B., & McGinty, J. (2009). Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. Journal of Biomaterials Science. Polymer edition, 20(1), 1–20. https://doi.org/10.1163/156856208X393464

Pund, S., Joshi, A., Vasu, K., Nivsarkar, M., & Shishoo, C. (2011). Gastroretentive delivery of rifampicin: In vitro mucoadhesion and in vivo gamma scintigraphy. International Journal of Pharmaceutics, 411(1-2), 106–112. doi:10.1016/j.ijpharm.2011.03.048

Qaiser, R., Pervaiz, F., Hanan, H., Shoukat, H., & Nadeem, M. (2023). Development of chondroitin sulfate-based mucoadhesive interpenetrating polymeric hydrogels of captopril with adjustable properties as gastro-retentive sustained drug release carriers. Polymer Bulletin, 1-27.

Raeisi, A., & Farjadian, F. (2024). Commercial hydrogel product for drug delivery based on route of administration. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1336717

Rault, I., & Pichon, G. (1999). Mucoadhesive pharmaceutical composition for the controlled release of active principles (U.S. Patent No. 5900247). U.S. Patent and Trademark Office. https://patents.google.com/patent/US5900247A/en?oq=US+5900247

Raval, A., Parikh, J., & Engineer, C. (2010). Mechanism of controlled release kinetics from medical devices. Brazilian Journal of Chemical Engineering, 27(2), 211–225. doi:10.1590/s0104-66322010000200001

Sankar, R., & Jain, S. K. (2013). Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: a mechanistic study. Drug Design, Development and Therapy, 7, 1455–1469. https://doi.org/10.2147/DDDT.S52890

Santus, G., Bottoni, G., & Lazzarini, C. (1996). Controlled-release mucoadhesive pharmaceutical composition for the oral administration of furosemide (U.S. Patent No. 5571533). U.S. Patent and Trademark Office. https://patents.google.com/patent/US5571533A/en?oq=US+5571533

Santus, G., Bottoni, G., & Sala, G. (1995). Pharmaceutical controlled-release composition with bioadhesive properties (U.S. Patent No. 5472704). U.S. Patent and Trademark Office. https://patents.google.com/patent/US5472704A/en?oq=US+5472704

Shahi, P., Kumari, N., & Pathak, K. (2015). Microspheres and tablet in capsule system: A novel chronotherapeutic system of ketorolac tromethamine for site and time specific delivery. International Journal of Pharmaceutical Investigation, 5(3), 161–170. https://doi.org/10.4103/2230-973X.160854

Shaikh, R., Raj Singh, T. R., Garland, M. J., Woolfson, A. D., & Donnelly, R. F. (2011). Mucoadhesive drug delivery systems. Journal of Pharmacy & Bioallied Sciences, 3(1), 89–100. https://doi.org/10.4103/0975-7406.76478

Sharma, D., Singh, M., Kumar, D., & Singh, G. (2012). Novel Paradigms in Mucoadhesive Drug Delivery System. International Journal of Pharmaceutical Sciences and Research, 3(8), 24555-2471.

Shinde, S., Tadwee, I., & Shahi, S. (2011). Gastro retentive drug delivery system: A review. International Journal of Pharmaceutical Research and Allied Sciences 1(1), 01-13.

Sonani, N. G., Hiremath, S. P., Dasankoppa, F. S., Jamakandi, V. G., & Sreenivas, S. A. (2010). Design and evaluation of gastroretentive mucoadhesive cephalexin tablets. Pharmaceutical Development and Technology, 15(2), 178–183. https://doi.org/10.3109/10837450903085426

Triantafyllou, K., Kalantzis, C., Papadopoulos, A. A., Apostolopoulos, P., Rokkas, T., Kalantzis, N., & Ladas, S. D. (2007). Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 39(6), 575–580. https://doi.org/10.1016/j.dld.2007.01.024

Tripathi, Thapa, Maharjan, & Jeong. (2019). Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics, 11(4), 193. doi:10.3390/pharmaceutics11040193

Turac, I., Porfire, A., Iurian, S., Crișan, A. G., Casian, T., Iovanov, R., & Tomuță, I. (2024). Expanding the manufacturing approaches for gastroretentive drug delivery systems with 3D printing technology. Pharmaceutics, 16(6), 790. https://doi.org/10.3390/pharmaceutics16060790

Varma, M. V. S., Kaushal, A. M., Garg, A., & Garg, S. (2004). Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2(1), 43–57. doi:10.2165/00137696-200402010-00003

Vinchurkar, K., Sainy, J., Khan, M. A., Mane, S., Mishra, D. K., & Dixit, P. (2022). Features and facts of a gastroretentive drug delivery system-a review. Turkish Journal of Pharmaceutical Sciences, 19(4), 476–487. https://doi.org/10.4274/tjps.galenos.2021.44959

Vrettos, N. N., Roberts, C. J., & Zhu, Z. (2021). Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics, 13(10), 1591. https://doi.org/10.3390/pharmaceutics13101591

Wen, H., & Park, K. (2010). Oral Controlled Release Formulation Design and Drug Delivery (H. Wen & Park Kinam, Eds.). John Wiley & Sons, Inc.

Copyright @ 2024 by Authors. Published by Universitas Indonesia. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.