Abstract
Osteoporosis represents a significant global public health issue, particularly among the aging population. Its incidence reaches 18.3% of the total population, with the highest prevalence observed in elderly postmenopausal women. A key factor in osteoporosis is the decreased expression level of estrogen receptor alpha (ERα), attributed to its degradation by the ubiquitin ligase protein complex Cullin4B (CUL4B), DNA damage binding 1 (DDB1), and aryl hydrocarbon receptor (AhR), collectively known as CUL4BAhR. Acanthus ilicifolius L contains compounds exhibiting antiosteoporosis activity, primarily by inhibiting osteoclastogenesis via RANKL. However, no reports exist of antiosteoporosis agents that act by inhibiting ERα degradation via CUL4BAhR. This study employed an in silico approach to predict active compounds from A. ilicifolius that could inhibit ERα degradation via CUL4BAhR, potentially developing them into antiosteoporosis agents. We utilized the 3D structures of proteins CUL4B-DDB1 (PDB ID:4A0L), AhR (5NJ8), and ERα (1A52) in various molecular docking tools, including ClusPro2.0, PyRx0.8, PyMol, PLIP, and SWISS-MODEL for QMEAN and structure assessment analysis. The ligands tested were acancifoliuside, acanthaminoside, acteoside, isoacteoside, (-)-lyoniresinol, (-)-lyioniresinol-3a-O-β-glucopyranoside, and estradiol. Acteoside displayed lower binding affinity energy (-9.7 kcal/mol) compared to estradiol (-8.9 kcal/mol) and was the lowest among all compounds. Acteoside was found to weaken the interaction between CUL4B-Rbx1 and CUL4B-DDB1 but not between AhR and ERα. Consequently, acteoside could be a viable candidate as an antiosteoporosis agent by inhibiting ERα degradation via the CUL4B-DDB1-AhR pathway. Further biochemical, in vitro, and in vivo studies are required to strengthen this evidence.
References
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/NAR/GKAB294
Bora, R., Adhikari, P. P., Das, A. K., Raaman, N., & Sharma, G. D. (2017). Ethnomedicinal, phytochemical, and, pharmacological aspects of genus acanthus. International Journal of Pharmacy and Pharmaceutical Sciences, 9(12), 18. https://doi.org/10.22159/ijpps.2017v9i12.22386
Carugo, O. (2003). How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. Journal of Applied Crystallography, 36(1), 125–128. https://doi.org/https://doi.org/10.1107/S0021889802020502
Chen, Z., Sui, J., Zhang, F., & Zhang, C. (2015). Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. Journal of Cancer, 6(3), 233–242. https://doi.org/10.7150/jca.11076
Chen, Z., Wang, K., Hou, C., Jiang, K., Chen, B., Chen, J., Lao, L., Qian, L., Zhong, G., Liu, Z., Zhang, C., & Shen, H. (2017). CRL4BDCAF11 E3 ligase targets p21 for degradation to control cell cycle progression in human osteosarcoma cells. Scientific Reports, 7(1), 1175. https://doi.org/10.1038/s41598-017-01344-9
Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-2269-7_19
Dhiani, B. A., & Andini, P. M. (2021). Penentuan Aktivitas Estrogenik Subfraksi dari Fraksi Air Daun Jeruju (Acanthus ilicifolius L.) dengan Metode E- Screen Assay. Universitas Muhammadiyah Purwokerto.
Dhiani, B. A., & Mehellou, Y. (2020). The Cul4-DDB1-WDR3/WDR6 complex binds SPAK and OSR1 kinases in a phosphorylation-dependent manner. ChemBioChem, 21(5). https://doi.org/10.1002/cbic.201900454
Dou, H., Duan, Y., Zhang, X., Yu, Q., Di, Q., Song, Y., Li, P., & Gong, Y. (2019). Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. Journal of Biological Chemistry, 294(48), 18504–18515. https://doi.org/10.1074/JBC.RA119.009282
Fischer, E. S., Bohm, K., Lydeard, J. R., Yang, H., Stadler, M. B., Cavadini, S., Nagel, J., Serluca, F., Acker, V., Lingaraju, G. M., Tichkule, R. B., Schebesta, M., Forrester, W. C., Schirle, M., Hassiepen, U., Ottl, J., Hild, M., Beckwith, R. E., Harper, J. W., … Thoma, N. H. (2014). Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 512(7512), 49–53
Hendrijatini, N., Rostiny, R., Kurdi, A., Ari, M. DA, Sitalaksmi, Ratri Maya Hapsari, P. D., Arief, V. V, & Sati, P. Y. (2019). Molecular triad RANK/ RANKL/ OPG in mandible and femur of wistar rats (Rattus norvegicus) with type 2 diabetes mellitus. Recent Advances in Biology and Medicine, 5, 1–7. https://www.rcsb.org/. (2022). RCSB PDB: Homepage. https://www.rcsb.org/
Huang, W., Peng, Y., Kiselar, J., Zhao, X., Albaqami, A., Mendez, D., Chen, Y., Chakravarthy, S., Gupta, S., Ralston, C., Kao, H.-Y., Chance, M. R., & Yang, S. (2018). Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nature Communications, 9(1), 3520. https://doi.org/10.1038/s41467-018-06034-2
Jackson, S., & Xiong, Y. (2009). CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends in Biochemical Sciences, 34(11), 562. https://doi.org/10.1016/J.TIBS.2009.07.002
Jia, M., Nie, Y., Cao, D. P., Xue, Y. Y., Wang, J. S., Zhao, L., Rahman, K., Zhang, Q. Y., & Qin, L. P. (2012). Potential antiosteoporotic agents from plants: A comprehensive review. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/364604
Jungsukcharoen, J., Dhiani, B. A., Cherdshewasart, W., Vinayavekhin, N., Sangvanich, P., & Boonchird, C. (2014). Pueraria mirifica leaves, an alternative potential isoflavonoid source. Bioscience, Biotechnology and Biochemistry, 78(6). https://doi.org/10.1080/09168451.2014.910091
Khalid, A. B., & Krum, S. A. (2016). Estrogen receptors alpha and beta in bone. Bone, 87, 130. https://doi.org/10.1016/J.BONE.2016.03.016
Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols. https://doi.org/10.1038/nprot.2015.04
Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12, 255. https://doi.org/10.1038/nprot.2016.169 https://www.nature.com/articles/nprot.2016.169#supplementary-information
Lee, J., & Zhou, P. (2012). Pathogenic role of the crl4 ubiquitin ligase in human disease. Frontiers in Oncology, 2(MAR). https://doi.org/10.3389/FONC.2012.00021
Lee, S. Y., Lee, K. S., Yi, S. H., Kook, S. H., & Lee, J. C. (2013). Acteoside suppresses RANKL-Mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production. PLOS ONE, 8(12), e80873. https://doi.org/10.1371/JOURNAL.PONE.0080873
Luecke-Johansson, S., Gralla, M., Rundqvist, H., Ho, J. C., Johnson, R. S., Gradin, K., & Poellinger, L. (2017). A molecular mechanism to switch the aryl hydrocarbon receptor from a transcription factor to an E3 ubiquitin ligase. Molecular and Cellular Biology, 37(13). https://doi.org/10.1128/MCB.00630-16
Luo, D., Chen, M., Li, Q., Wang, K., Wang, K., Li, J., Fu, G., Shan, Z., Liu, Q., Yang, Y., Liang, L., Ma, Y., Qin, Y., Qin, J., Gao, D., & Li, X. (2023). CUL4B-DDB1-COP1-mediated UTX downregulation promotes colorectal cancer progression. Experimental Hematology & Oncology, 12(1), 77. https://doi.org/10.1186/s40164-023-00440-z
Ohtake, F., Fujii-Kuriyama, Y., & Kato, S. (2009). AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochemical Pharmacology, 77(4), 474–484. https://doi.org/10.1016/J.BCP.2008.08.034
Ohtake, F., Fujii-Kuriyama, Y., Kawajiri, K., & Kato, S. (2011). Cross-talk of dioxin and estrogen receptor signals through the ubiquitin system. The Journal of Steroid Biochemistry and Molecular Biology, 127(1–2), 102–107. https://doi.org/10.1016/J.JSBMB.2011.03.007
Pantsar, T., & Poso, A. (2018). Binding affinity via docking: fact and fiction. Molecules (Basel, Switzerland), 23(8). https://doi.org/10.3390/molecules23081899
Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?. Molecules, 23(5). https://doi.org/10.3390/molecules23051038
Salari, N., Ghasemi, H., Mohammadi, L., Behzadi, M. hasan, Rabieenia, E., Shohaimi, S., & Mohammadi, M. (2021). The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 16(1), 1–20. https://doi.org/10.1186/S13018-021-02772-0/FIGURES/8
Saranya, A., Ramanathan, T., Kesavanarayanan, K. S., & Adam, A. (2015). Traditional medicinal uses, chemical constituents and biological activities of a mangrove plant, Acanthus ilicifolius Linn. : A brief review. American-Eurasian Journal of Agricultural & Environmental Sciences, 15(2), 243–250. https://doi.org/10.5829/idosi.aejaes.2015.15.2.12529
Shen, Y., Huang, X., Wu, J., Lin, X., Zhou, X., Zhu, Z., Pan, X., Xu, J., Qiao, J., Zhang, T., Ye, L., Jiang, H., Ren, Y., & Shan, P.-F. (2022). The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990-2019. Frontiers in Endocrinology, 13, 882241. https://doi.org/10.3389/fendo.2022.882241
Singh, D., & Aeri, V. (2013). Phytochemical and pharmacological potential of Acanthus ilicifolius. Journal of Pharmacy and Bioallied Sciences, 5(1), 17–20. https://doi.org/10.4103/0975-7406.106557
Speight, J. G. (2020). Water chemistry. Natural Water Remediation, 91–129. https://doi.org/10.1016/B978-0-12-803810-9.00003-6
Streicher, C., Heyny, A., Andrukhova, O., Haigl, B., Slavic, S., Schüler, C., Kollmann, K., Kantner, I., Sexl, V., Kleiter, M., Hofbauer, L. C., Kostenuik, P. J., & Erben, R. G. (2017). Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-06614-0
Studer, G., Studer, G., Rempfer, C., Rempfer, C., Waterhouse, A. M., Waterhouse, A. M., Gumienny, R., Gumienny, R., Haas, J., Haas, J., Schwede, T., & Schwede, T. (2020). QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics, 36(8), 2647–2647. https://doi.org/10.1093/BIOINFORMATICS/BTAA058
Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein Interactions Calculator. Nucleic Acids Research, 35(suppl_2), W473–W476. https://doi.org/10.1093/nar/gkm423
Van Kiem, P., Quang, T. H., Huong, T. T., Nhung, L. T. H., Cuong, N. X., Van Minh, C., Choi, E. M., & Kim, Y. H. (2008). Chemical constituents of Acanthus ilicifolius L. and effect on osteoblastic MC3T3E1 cells. Archives of Pharmacal Research, 31, 823–829.
WHO. (2023). Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall III, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293–315. https://doi.org/https://doi.org/10.1002/pro.3330
Wu, M., Lai, H., Deng, Q., Peng, X., Shen, J., Zhou, X., Peng, W., Zhu, L., Tu, H., & Li, X. (2022). The evaluation of xiaozeng qianggu tablets for treating postmenopausal osteoporosis via up-regulated autophagy. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/3960834
Recommended Citation
Dhiani, Binar Asrining; Sarmoko, Sarmoko; Wahyuningrum, Retno; and Yulianto, Akbar
(2023)
"Molecular Docking Analysis of Acanthus ilicifolius Compounds Toward CUL4B-DDB1-AhR-ERα Complex Protein for Antiosteoporosis Discovery,"
Pharmaceutical Sciences and Research: Vol. 10:
No.
3, Article 2.
DOI: 10.7454/psr.v10i3.1338
Available at:
https://scholarhub.ui.ac.id/psr/vol10/iss3/2
Included in
Medicinal and Pharmaceutical Chemistry Commons, Natural Products Chemistry and Pharmacognosy Commons