Encapsulation was a promising method for protecting probiotics from extreme conditions during their passage through the gastrointestinal tract and delivering probiotics to specific sites in the colon for colonization. Various dosage forms have been used in recent years to encapsulate probiotics to maintain cell viability during processing, storage, and through the digestive tract to provide health benefits. However, research related to the encapsulation of probiotics as the dosage forms for colon-targeted delivery systems was still quite limited to conventional dosage forms due to the sensitivity of probiotics to extreme conditions during the process. This review focuses on various types of dosage forms that are used in colon-targeted delivery systems for commonly used probiotic bacteria. In this review, we discussed the limitations of the current dosage forms used in probiotic encapsulation, along with the latest advancements in colon-targeted delivery systems for probiotic products. This review also covers future perspectives on the potential dosage forms that can effectively maintain probiotic viability and provide specific release in the colon.


Anselmo, A. C., McHugh, K. J., Webster, J., Langer, R., & Jaklenec, A. (2016). Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Advanced Materials, 28(43), 9486–9490. https://doi.org/10.1002/adma.201603270

Arévalo-Pérez, R., Maderuelo, C., & Lanao, J. M. (2020). Recent advances in colon drug delivery systems. Journal of Controlled Release, 327(September), 703–724. https://doi.org/10.1016/j.jconrel.2020.09.026

Asgari, S., Pourjavadi, A., Licht, T. R., Boisen, A., & Ajalloueian, F. (2020). Polymeric carriers for enhanced delivery of probiotics. Advanced Drug Delivery Reviews, 161–162, 1–21. https://doi.org/10.1016/j.addr.2020.07.014

Awad, A., Madla, C. M., McCoubrey, L. E., Ferraro, F., Gavins, F. K. H., Buanz, A., Gaisford, S., Orlu, M., Siepmann, F., Siepmann, J., & Basit, A. W. (2022). Clinical translation of advanced colonic drug delivery technologies. Advanced Drug Delivery Reviews, 181, 114076. https://doi.org/10.1016/j.addr.2021.114076

Bak, A., Ashford, M., & Brayden, D. J. (2018). Local delivery of macromolecules to treat diseases associated with the colon. Advanced Drug Delivery Reviews, 136–137, 2–27. https://doi.org/10.1016/j.addr.2018.10.009

Bazban-Shotorbani, S., Hasani-Sadrabadi, M. M., Karkhaneh, A., Serpooshan, V., Jacob, K. I., Moshaverinia, A., & Mahmoudi, M. (2017). Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Journal of Controlled Release, 253, 46–63. https://doi.org/10.1016/j.jconrel.2017.02.021

Bipin, G., & Jagdish, B. (2017). Vitro evaluation of multiparticulate controlled drug delivery system. International Journal of Pharmaceutical and Chemical Sciences, 6, Issue 3

Chaubey, P., Momin, M., & Sawarkar, S. (2020). Significance of ligand-anchored polymers for drug targeting in the treatment of colonic disorders. Frontiers in Pharmacology, 10, 1628. https://doi.org/10.3389/fphar.2019.01628

Dafe, A., Etemadi, H., Dilmaghani, A., & Mahdavinia, G. R. (2017). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 97, 536–543. https://doi.org/10.1016/j.ijbiomac.2017.01.060

E Silva, J. P. S., Sousa, S. C., Costa, P., Cerdeira, E., Amaral, M. H., Lobo, J. S., Gomes, A. M., Pintado, M. M., Rodrigues, D., Rocha-Santos, T., & Freitas, A. C. (2013). Development of probiotic tablets using microparticles: Viability studies and stability studies. AAPS PharmSciTech, 14(1), 121–127. https://doi.org/10.1208/s12249-012-9898-9

Gately, N. M., & Kennedy, J. E. (2017). The development of a melt-extruded shellac carrier for the targeted delivery of probiotics to the colon. Pharmaceutics, 9(4), 1–12. https://doi.org/10.3390/pharmaceutics9040038

Gomez-Mascaraque, L. G., Morfin, R. C., Pérez-Masiá, R., Sanchez, G., & Lopez-Rubio, A. (2016). Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT, 69, 438–446. https://doi.org/10.1016/j.lwt.2016.01.071

Hadzieva, J., Glavas Dodov, M., Simonoska Crcarevska, M., Koprivica, B., Dimchevska, S., Geskovski, N., Petreska Ivanovska, T., Petrushevska-Tozi, L., Goracinova, K., & Mladenovska, K. (2019). Tablets of soy protein-alginate microparticles with Lactobacillus casei 01: Physicochemical and biopharmaceutical properties. Chemical Industry and Chemical Engineering Quarterly, 25(1), 57–66. https://doi.org/10.2298/CICEQ170616019H

Haffner, F. B., Van De Wiele, T., & Pasc, A. (2017). Original behavior of: L. rhamnosus GG encapsulated in freeze-dried alginate-silica microparticles revealed under simulated gastrointestinal conditions. Journal of Materials Chemistry B, 5(38), 7839–7847. https://doi.org/10.1039/c7tb02190a

Helander, H. F., & Fändriks, L. (2014). Surface area of the digestive tract-revisited. Scandinavian Journal of Gastroenterology, 49(6), 681–689. https://doi.org/10.3109/00365521.2014.898326

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66

Hua, S. (2020). Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Frontiers in Pharmacology, 11(April), 1–22. https://doi.org/10.3389/fphar.2020.00524

Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(5), 1117–1132. https://doi.org/10.1016/j.nano.2015.02.018

Huang, X., Gänzle, M., Zhang, H., Zhao, M., Fang, Y., & Nishinari, K. (2021). Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. Journal of the Science of Food and Agriculture, 101(2), 726–734. https://doi.org/10.1002/jsfa.10685

Ivanovska, T. P., Mladenovska, K., Zhivikj, Z., Pavlova, M. J., Gjurovski, I., Ristoski, T., & Petrushevska-Tozi, L. (2017). Synbiotic loaded chitosan-Ca-alginate microparticles reduces inflammation in the TNBS model of rat colitis. International Journal of Pharmaceutics, 527(1–2), 126–134. https://doi.org/10.1016/j.ijpharm.2017.05.049

Iswandana, R., Putri, K. S. S., Anisa, H. N., Ricardo, W., & Nurhadi, P. A. S. (2023). Formulation of various polysaccharides-based multicoated tablets containing dexamethasone and probiotics for inflammatory bowel disease. Journal of Applied Pharmaceutical Science, 13(09), 106-114. https://doi.org/10.7324/JAPS.2023.129156

Iswandana, R., Putri, K. S. S., Wulandari, F. R., Najuda, G., Sari, S. P., & Djajadisastra, J. (2018). Preparation of calcium alginate-tetrandrine beads using ionic gelation method as colon-targeted dosage form. Journal of Applied Pharmaceutical Science, 8(5), 68–74. https://doi.org/10.7324/JAPS.2018.8509

Iswandana, R., Sari, K., Putri, S., Larasati, A., Gunawan, M., & Putri, F. A. (2022). Delivery of potential drugs to the colon: challenges and strategies. Indonesian Journal of Pharmacy, 33(3), 307-332. https://doi.org/10.22146/ijp.2734

Iswandana, R., Sari Setio Putri, K., Amalia Putri, F., Gunawan, M., & Arum Larasati, S. (2022). Challenge and development strategy for colon-targeted drug delivery system. Pharmaceutical Sciences and Research, 9(1), 17-27. https://doi.org/10.7454/psr.v9i1.1251

Iswandana, R., Sutriyo, S., Gunawan, M., Larasati, S. A., & Putri, F. A. (2021). Colon-targeted protein delivery by using solid lipid nanoparticles. Journal of Applied Pharmaceutical Science, 11(9), 118–123. https://doi.org/10.7324/JAPS.2021.110914

Jacobsen, N. M. Y., Nedergaard, H. B., Kock, A., Caglayan, I., Laursen, M. M., Lange, E. M., Marcial-Coba, M. S., Bar-Shalom, D., Nielsen, D. S., & Müllertz, A. (2021). Development of gastro-resistant coated probiotic granulates and evaluation of viability and release during simulated upper gastrointestinal transit. LWT, 144(December 2020). https://doi.org/10.1016/j.lwt.2021.111174

Johansson, M. E. V. (2014). Mucus layers in inflammatory bowel disease. Inflammatory Bowel Diseases, 20(11), 2124–2131. https://doi.org/10.1097/MIB.0000000000000117

Johansson, M. E. V., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology and Hepatology, 10(6), 352–361. https://doi.org/10.1038/nrgastro.2013.35

Kiela, P. R., & Ghishan, F. K. (2016). Physiology of intestinal absorption and secretion. Best Practice and Research: Clinical Gastroenterology, 30(2), 145–159. https://doi.org/10.1016/j.bpg.2016.02.007

Kumar, A., Gulati, M., Singh, S. K., Gowthamarajan, K., Prashar, R., Mankotia, D., Gupta, J. P., Banerjee, M., Sinha, S., Awasthi, A., Corrie, L., Kumar, R., Patni, P., Kumar, B., Pandey, N. K., Sadotra, M., Kumar, P., Kumar, R., Wadhwa, S., & Khursheed, R. (2020). Effect of co-administration of probiotics with guar gum, pectin and eudragit S100 based colon targeted mini tablets containing 5-Fluorouracil for site specific release. Journal of Drug Delivery Science and Technology, 60(April), 102004. https://doi.org/10.1016/j.jddst.2020.102004

Kurakula, M., Gorityala, S., & Moharir, K. (2021). Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: Update 2020. Journal of Drug Delivery Science and Technology, 64(December 2020), 102579. https://doi.org/10.1016/j.jddst.2021.102579

Laelorspoen, N., Wongsasulak, S., Yoovidhya, T., & Devahastin, S. (2014). Microencapsulation of Lactobacillus acidophilus in zein-alginate core-shell microcapsules via electrospraying. Journal of Functional Foods, 7(1), 342–349. https://doi.org/10.1016/j.jff.2014.01.026

Leal, J., Dong, T., Taylor, A., Siegrist, E., Gao, F., Smyth, H. D. C., & Ghosh, D. (2018). Mucus-penetrating phage-displayed peptides for improved transport across a mucus-like model. International Journal of Pharmaceutics, 553(1–2), 57–64. https://doi.org/10.1016/j.ijpharm.2018.09.055

Li, Z., Behrens, A. M., Ginat, N., Tzeng, S. Y., Lu, X., Sivan, S., Langer, R., & Jaklenec, A. (2018). Biofilm-inspired encapsulation of probiotics for the treatment of complex infections. Advanced Materials, 30(51). https://doi.org/10.1002/adma.201803925

Librán, C. M., Castro, S., & Lagaron, J. M. (2017). Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Science and Emerging Technologies, 39, 216–222. https://doi.org/10.1016/j.ifset.2016.12.013

Lone, K. D., Dhole, J. A., & Borhade, P. S. (2013). Bioencapsulation of Probiotic Bacteria by Direct Compression Method. International Journal of Pharmaceutical and Chemical Sciences, 2(3).

Lozoya-Agullo, I., Zur, M., Fine-Shamir, N., Markovic, M., Cohen, Y., Porat, D., González-Álvarez, I., González-Álvarez, M., Merino-Sanjuán, M., Bermejo, M., & Dahan, A. (2017). Investigating drug absorption from the colon: Single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion. International Journal of Pharmaceutics, 527(1–2), 135–141. https://doi.org/10.1016/j.ijpharm.2017.05.018

Major, G., Murray, K., Singh, G., Nowak, A., Hoad, C. L., Marciani, L., Silos-Santiago, A., Kurtz, C. B., Johnston, J. M., Gowland, P., & Spiller, R. (2018). Demonstration of differences in colonic volumes, transit, chyme consistency, and response to psyllium between healthy and constipated subjects using magnetic resonance imaging. Neurogastroenterology and Motility, 30(9), 1–11. https://doi.org/10.1111/nmo.13400

Mirzaeei, S., & Tagheh, S. (2017). Compressed tablet of probiotic for oral delivery with high viability cells formulation direct compression tablet of probiotic as dosage form for oral delivery. Medical Sciences Journal of Reports in Pharmaceutical Sciences, 6(1).

Nidhi, Rashid, M., Kaur, V., Hallan, S. S., Sharma, S., & Mishra, N. (2016). Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharmaceutical Journal, 24(4), 458–472. https://doi.org/10.1016/j.jsps.2014.10.001

Palugan, L., Cerea, M., Zema, L., Gazzaniga, A., & Maroni, A. (2015). Coated pellets for oral colon delivery. Journal of Drug Delivery Science and Technology, 25, Issue February, 1–15. Editions de Sante. https://doi.org/10.1016/j.jddst.2014.12.003

Park, H. J., Lee, G. H., Jun, J. H., Son, M., Choi, Y. S., Choi, M. K., & Kang, M. J. (2015). Formulation and in vivo evaluation of probiotics-encapsulated pellets with hydroxypropyl methylcellulose acetate succinate (HPMCAS). Carbohydrate Polymers, 136, 692–699. https://doi.org/10.1016/j.carbpol.2015.09.083

Park, H. J., Lee, G. H., Jun, J., Son, M., & Kang, M. J. (2016). Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect. Drug Design, Development and Therapy, 10, 1355–1364. https://doi.org/10.2147/DDDT.S103894

Paula, D. de A., Martins, E. M. F., Costa, N. de A., de Oliveira, P. M., de Oliveira, E. B., & Ramos, A. M. (2019). Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. International Journal of Biological Macromolecules, 133, 722–731. https://doi.org/10.1016/j.ijbiomac.2019.04.110

Phoem, A. N., Chanthachum, S., & Voravuthikunchai, S. P. (2015). Preparation of eleutherine americana-alginate complex microcapsules and application in bifidobacterium longum. Nutrients, 7(2), 831–848. https://doi.org/10.3390/nu7020831

Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10, S49–S66. https://doi.org/10.1093/advances/nmy063

Poletto, G., Fonseca, B. de S., Raddatz, G. C., Wagner, R., Lopes, E. J., Barin, J. S., Flores, E. M. de M., & Menezes, C. R. de. (2019). Encapsulation of Lactobacillus acidophilus and different prebiotic agents by external ionic gelation followed by freeze-drying. Ciencia Rural, 49(2). https://doi.org/10.1590/0103-8478cr20180729

Prudhviraj, G., Vaidya, Y., Singh, S. K., Yadav, A. K., Kaur, P., Gulati, M., & Gowthamarajan, K. (2015). Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release. European Journal of Pharmaceutics and Biopharmaceutics, 97, 164–172. https://doi.org/10.1016/j.ejpb.2015.09.012

Qin, X. S., Luo, Z. G., & Li, X. L. (2021). An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release. Food Hydrocolloids, 113(June 2020), 106460. https://doi.org/10.1016/j.foodhyd.2020.106460

Raise, A., Dupont, S., Iaconelli, C., Caliri, C., Charriau, A., Gervais, P., Chambin, O., & Beney, L. (2020). Comparison of two encapsulation processes to protect the commensal gut probiotic bacterium Faecalibacterium prausnitzii from the digestive tract. Journal of Drug Delivery Science and Technology, 56(October 2019), 101608. https://doi.org/10.1016/j.jddst.2020.101608

Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L., & Hoorfar, M. (2021). Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocolloids, 120(November 2020), 106882. https://doi.org/10.1016/j.foodhyd.2021.106882

Sagita, E., Winata, R. O., & Iswandana, R. (2022). Formulation of pectin-based double layer-coated tablets containing dexamethasone and probiotics for inflammatory bowel disease. Pharmaceutical Sciences and Research, 9(3), 132-138

Shahdadi Sardo, H., Saremnejad, F., Bagheri, S., Akhgari, A., Afrasiabi Garekani, H., & Sadeghi, F. (2019). A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. International Journal of Pharmaceutics, 558(January), 367–379. https://doi.org/10.1016/j.ijpharm.2019.01.022

Singh, A., Mandal, U. K., & Narang, R. K. (2021). Development and characterization of enteric coated pectin pellets containing mesalamine and Saccharomyces boulardii for specific inflamed colon: In vitro and in vivo evaluation. Journal of Drug Delivery Science and Technology, 62(January), 102393. https://doi.org/10.1016/j.jddst.2021.102393

Smilkov, K., Petreska Ivanovska, T., Petrushevska Tozi, L., Petkovska, R., Hadjieva, J., Popovski, E., Stafilov, T., Grozdanov, A., & Mladenovska, K. (2014). Optimization of the formulation for preparing Lactobacillus casei loaded whey protein-Ca-alginate microparticles using full-factorial design. Journal of Microencapsulation, 31(2), 166–175. https://doi.org/10.3109/02652048.2013.824511

Sun, Q., & Wicker, L. (2021). Hydrogel encapsulation of lactobacillus casei by block charge modified pectin and improved gastric and storage stability. Foods, 10(6), 1–10. https://doi.org/10.3390/foods10061337

Surono, I., Verhoeven, J., Verbruggen, S., & Venema, K. (2018). Microencapsulation increases survival of the probiotic Lactobacillus plantarum IS-10506, but not Enterococcus faecium IS-27526 in a dynamic, computer-controlled in vitro model of the upper gastrointestinal tract. Journal of Applied Microbiology, 124(6), 1604–1609. https://doi.org/10.1111/jam.13740

Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7). MDPI AG. https://doi.org/10.3390/nu11071591

Torp, A. M., Bahl, M. I., Boisen, A., & Licht, T. R. (2022). Optimizing oral delivery of next generation probiotics. Trends in Food Science & Technology, 119, (December 2021), 101–109. https://doi.org/10.1016/j.tifs.2021.11.034

Vass, P., Démuth, B., Hirsch, E., Nagy, B., Andersen, S. K., Vigh, T., Verreck, G., Csontos, I., Nagy, Z. K., & Marosi, G. (2019). Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 296, (January), 162–178. https://doi.org/10.1016/j.jconrel.2019.01.023

Wang, H., Naghavi, M., Allen, C., Barber, R. M., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coates, M. M., Coggeshall, M., Dandona, L., Dicker, D. J., Erskine, H. E., Haagsma, J. A., Fitzmaurice, C., Foreman, K., Forouzanfar, M. H., Fraser, M. S., Fullman, N., … Zuhlke, L. J. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

Wang, M., Hao, W., Zhang, L., Zhu, Y., Chen, K., Ma, S., Cheng, X., & Zhao, J. (2021). Lipid-polymer nano core-shell type hybrid system for colon specific drug delivery. Journal of Drug Delivery Science and Technology, 63(January), 102540. https://doi.org/10.1016/j.jddst.2021.102540

Yang, X., Yu, D., Xue, L., Li, H., & Du, J. (2020). Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharmaceutica Sinica B, 10(3), 475–487. https://doi.org/10.1016/j.apsb.2019.07.001

Yus, C., Gracia, R., Larrea, A., Andreu, V., Irusta, S., Sebastian, V., Mendoza, G., & Arruebo, M. (2019). Targeted release of probiotics from enteric microparticulated formulations. Polymers, 11(10). https://doi.org/10.3390/polym11101668

Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., & Tromp, R. H. (2017). Electrospray assisted fabrication of hydrogel microcapsules by single- and double-stage procedures for encapsulation of probiotics. Food and Bioproducts Processing, 102, 250–259. https://doi.org/10.1016/j.fbp.2017.01.004

Zheng, H., Gao, M., Ren, Y., Lou, R., Xie, H., Yu, W., Liu, X., & Ma, X. (2017). An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of Lactobacillus rhamnosus ATCC 53103. Carbohydrate Polymers, 155, 329–335. https://doi.org/10.1016/j.carbpol.2016.08.096



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.