Abstract
In this study, a cascade PID control structure is proposed and implemented for a 6-degree-of-freedom (6-DOF) unmanned aerial vehicle (UAV) to enhance stability and trajectory tracking capabilities under both noise and non-noise conditions. The controller was designed based on the Tyreus–Luyben tuning method and was evaluated using quantitative metrics, including rise time, settling time, overshoot, and steady-state error. Simulation results on MATLAB/Simulink show that the controller achieves high performance in angular channels (ϕ, θ, ψ) and altitude (z) with a short rise time (< 2s), slight overshoot (< 1%), and nearly eliminated steady-state error. However, the horizontal position channels (x, y) have a longer settling time (~110s) and are sensitive to white noise. Quantitative comparisons with other control methods show that the cascade PID outperforms the standard PID in terms of accuracy and stability, achieving a performance comparable to LQR under noise-free conditions, but is less robust in the presence of noise than advanced methods like SMC and MPC. These results confirm the feasibility of cascade PID in UAV applications and indicate potential future improvements by integrating nonlinear, adaptive, or intelligent control strategies.
References
- A.R.A. Majid, 2024 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom), Dubai, United Arab Emirates, 2024, p.335.
- Y. Fan, J. Phys. Conf. Ser. 2283 (2022) 012011.
- Q. Jiao, J. Liu, Y. Zhang, W. Lian, 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanjing, China, 2018, p.88.
- X. Yiheng, Proceedings of the 7th International Con-ference on Information Technologies and Electrical Engineering, New York, USA, 2025, p.434.
- T.L. Mien, T.N. Tu, V.V. An, Int. J. Rob. Control Syst. 4/2 (2024) 814.
- A.S. Elkhatem, S.N. Engin, Alexandria Eng. J. 61/8 (2022) 6275.
- A.A. Mian, W. Daobo, Chin. J. Aeronaut. 21/3 (2008) 261.
- C.S. Ha, Z. Zuo, F.B. Choi, D. Lee, Rob. Auton. Syst. 62/9 (2014) 1305.
- V. Nekoukar, N.M. Dehkordi, Control Eng. Pract. 110 (2021) 104.
- H. Housny, E.A. Chater, H. El Fadil, 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra, Morocco, 2019, p.6.
- C.E. Luis, M. Vukosavljev, A.P. Schoellig, IEEE Rob. Autom. Lett. 5/2 (2020) 604.
- C.-C. Chen, Y.-T. Chen, IEEE Access. 9 (2021) 26674.
- M. Labbadi, Y. Boukal, M. Cherkaoui, M. Djemai, J. Franklin Inst. 358/9 (2021) 4822.
- A. Daadi, H. Boulebtinaia, S.H. Derrouaouia, F. Boudjema, Int. J. Rob. Control Syst. 2/2 (2022) 332.
- M. Karahan, M. Inala, C. Kasnakoglu, Int. J. Rob. Control Syst. 3/2 (2023) 270.
- N.H. Sahrir, M.A.M. Basri, Int. J. Rob. Control Syst. 4/1 (2024) 151.
- T. Luukkonen, Modeling and control of quadcopter School of Science Mat-2.4108 Independent research project in applied mathematics, Aalto University, Espoo, 2011.
- S. Nasr, K. Bouallegue, H. Mekki, S. Vaidyanathan, Int. J. Circuit Theory Appl. 9/2-A (2016) 453.
- T. Bresciani, Modeling, Department of Automatic Control, Lund University, Swedia, 2008.
- A.N. Muhsen, S.M. Raafat, Eng. Technol. J. 39/6 (2021) 996.
- T.S. Alderete, Simulator Aero Model Implemen-tation, NASA Ames Research Center, Moffett Field, California, 1997.
- W. Johnson, I. Chopra, NASA Technical Reports Server (NTRS) 19780002059: Calculated Hovering Helicopter Flight Dynamics with a Circulation Controlled Rotor, NASA Technical Reports Server, California, 1977.
- S. Abdelhaya, A. Zakriti, Procedia Manuf. 32 (2019) 564.
- A.R. Shirsat, Arizona State University, United States, 2015.
- P. Castillo, R. Lozano, A. Dzul, IEEE Control Syst. Mag. 25/6 (2005) 45.
- G.V. Raffo, M.G. Ortega, F.R. Rubio, Automatica. 46/1 (2010) 29.
- K.J. Åström, T. Hagglund, Advanced PID Control, ISA-The Instrumentation, Systems, and Automation Society, Durham, 2006.
- A.T. Bayisa, Int. J. Eng. Res. Technol. 8/12 (2019) 195.
- N.H. Ahir, M.A.M. Basri, Modeling and Manual Tuning PID Control of Quadcopter. In: N.A.Wahab, Z. Mohamed (Eds.), Control, Instrumentation and Mechatronics: Theory and Practice. Lecture Notes in Electrical Engineering, vol. 921, Springer, Singapore, 2022, p.346.
- D. Kotarski, Z. Benić, M. Krznar, Interdiscip. Descr. Complex Syst. 14/2 (2016) 236.
- I.C. Dikmen, A. Arisoy, H. Temeltas, 2009 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2009, p.722.
- M.L. Luyben, W.L. Luyben, Essentials of Process Control, McGraw-Hill, New York, 1997.
- N.H. Sahrir, M.A.M. Basri, Int. J. Rob. Control Syst. 4/1 (2024) 151.
- A’d. Baharuddin, M.A.M. Basri, ELEKTRIKA J. Electr. Eng. 22/2 (2023) 14.
- A. Noordin, M.A.M. Basri, Z. Mohamed, Bull. Electr. Eng. Inform. 9/5 (2020) 1811.
- A.M. A., A. Saleem, Int. J. Rob. Control Syst. 4 (2024) 401.
Recommended Citation
Van, An Vo and Duy, Hung Ha
(2025)
"Control Strategies for 6-DOF Quadcopter UAVs: Cascade PID Stabilization in White Noise Conditions,"
Makara Journal of Technology: Vol. 29:
Iss.
3, Article 1.
DOI: 10.7454/mst.v29i3.1697
Available at:
https://scholarhub.ui.ac.id/mjt/vol29/iss3/1

