"Effect of Audio–Sonic Waves on Heat Transfer in a Distilled Water" by Agggito Pringgo Tetuko, Ayu Yuswati Sari et al.
  •  
  •  
 

Abstract

In this research, the influence of audio–sonic waves on distilled water used as the working fluid in a shell-and-tube heat exchanger was examined. The audio–sonic wave frequencies and flow rates of the cold and hot liquids were varied as follows: 4.85, 6.78, and 13.43 kHz for the audio–sonic waves; 0.3, 0.4, and 0.5 l/min for the cold liquid; and 0.76, 1.0, and 1.5 l/min for the hot liquid. An increase in the audio–sonic wave frequency enhanced both the overall heat transfer coefficient (U) and the enhancement factor (EF). The optimum values of U and EF, measured at 300 W/m3 ·°C and 1.05, respectively, were achieved at the highest frequency of 13.43 kHz. Additionally, the flow rates of the hot and cold liquids in the heat exchanger significantly influenced the optimal values of U and EF.

References

  1. M.J. Montes, J.I. Linares, R. Barbero, A. Rovira, Sol. Energy. 211 (2020) 1027.
  2. S.H. Hong, D.S. Jang, S. Yun, J.H. Baek, Y. Kim, Energ. Convers Manage. 223 (2020) 113306.
  3. D. Huu-Quan, A. Memarian, M. Izadi, S.A. Shehzad, Renew. Energ. 162 (2020) 1874.
  4. X.L. Yang, Y. Gong, Z.G. Yang, Eng. Fail. Anal. 118 (2020) 104900.
  5. O. Arsenyeva, O. Perevertaylenko, L. Tovazhny-anskyy, P. Arsenyev, P. Kapustenko, Therm. Sci. Eng. Prog. 43 (2023) 101984.
  6. A. Moosavi, A.L. Ljung, T.S. Lundström, Therm. Sci. Eng. Prog. 40 (2023) 101746.
  7. Z. Li, M. Sheikholeslami, M. Jafaryar, A. Shafee, A.J. Chamkha, J. Mol. Liq. 266 (2018) 797.
  8. A. Arora, P.M.V. Subbarao, Therm. Sci. Eng. Prog. 42 (2023) 101936.
  9. H.A.M. Hussein, R. Zulkifli, W.M.F.B.W. Mahmood, R.K. Ajeel, Elsevier Ltd., Australia, 2022.
  10. D. Liang, C. Shi, W. Li, W. Chen, M.K. Chyu, Int. J. Heat Mass Tran. 201/Part 1 (2023) 123620.
  11. U. Han, H. Kang, H. Lim, J. Han, H. Lee, Int. J. Heat Mass Tran. 144 (2019) 118589.
  12. W. Ajeeb, S.M.S. Murshed, Elsevier Ltd., Australia, 2022.
  13. M. Legay, S. Le Person, N. Gondrexon, P. Boldo, A. Bontemps, Appl. Therm. Eng. 37(2012) 60.
  14. N. Gondrexon, L. Cheze, Y. Jin, M. Legay, Q. Tissot, N. Hengl, et al., Ultrason. Sonochem. 25/1 (2015) 40.
  15. A.A. Delouei, H. Sajjadi, R. Mohebbi, M. Izadi, Ultrason. Sonochem. 51 (2019) 159.
  16. M. Setareh, M. Saffar-Avval, A. Abdullah, Appl. Therm. Eng. 159 (2019) 113867.
  17. M. Setareh, M. Saffar-Avval, A. Abdullah, Int. Commun. Heat Mass. 114 (2020) 104560.
  18. D. Zhang, E. Jiang, J. Zhou, C. Shen, Z. He, C. Xiao, Int. Commun. Heat Mass. 115 (2020) 104523.
  19. C. Guo, M. Gao, W. Wei, Z. Liu, L. Guo, Int. J. Heat Mass Tran. 203 (2023) 123797.
  20. J. Li, S. Hou, D. Teng, G. Shen, Int. J. Heat Mass Tran. 201/Part 1 (2023) 123565.
  21. H.C. Deeth, N. Datta, Elsevier Ltd., Australia, 2011.
  22. M. Legay, N. Gondrexon, S. Le Person, P. Boldo, A. Bontemps, Int. J. Chem. Eng. 2011/1 (2011) 670108.
  23. C. Devos, A. Bampouli, E. Brozzi, G.D. Stefanidis, M. Dusselier, T.V. Gerven, et al., Chem. Soc. Rev. 54 (2025) 85.
  24. M. Legay, Y. Allibert, N. Gondrexon, P. Boldo, S. Le Person, Exp. Therm. Fluid. Sci. 46 (2013) 111.
  25. M. Legay, B. Simony, P. Boldo, N. Gondrexon, S. Le Person, A. Bontemps, Ultrason Sonochem. 19/6 (2012) 1194.
  26. A. Franco, C. Bartoli, J. Phys. Conf. Ser. 1224 (2019) 012035.
  27. N. Gondrexon, Y. Rousselet, M. Legay, P. Boldo, S. Le Person, A. Bontemps, Chem. Eng. Process. 49/9 (2010) 936.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.