•  
  •  
 

Abstract

Cholesterol oxidase (CO) was successfully produced from Streptomyces sp. via the submerged fermentation method, and 69 U/mL enzyme activity was obtained. This study aimed to determine cholesterol oxidation kinetics and the production of CO as a catalyst. The enzyme was diluted to 0.15, 0.075, and 0.00375 U/mL for the oxidation reaction. The substrate was also prepared in three concentrations: 3.23, 6.46, and 12.93 mM. The optimization of conditions for enzymatic cholesterol oxidation was investigated through measurement of the effect of initial cholesterol and enzyme concentrations. Cholesterol concentration was rapidly measured via high-performance liquid chromatography (HPLC). The kinetics of CO were modeled using the first-order irreversible reaction. An enzymatic kinetic model was derived, and it was verified using experimental data and sensitivity analysis. Based on the experiment, the highest enzyme concentrations of crude and commercial CO can oxidize the substrate up to 84% within 240 min. However, the oxidation reaction showed a slightly different behavior in the early 60 min, and crude CO exhibited a slower substrate oxidation. The kinetic rate constant obtained by Euler’s method reached 1.0 x 10−3/min and 1.41 x 10−3/min for 0.15 U/mL crude and commercial CO, respectively.

References

  1. H.K. Walker, W.D. Hall, J.W. Hurst (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed., Boston, Butterworths, 1990.
  2. W. Richmond, Clin. Chem. 19/12 (1973) 1350.
  3. C. Lv, W. Wang, Y. Tang, L. Wang, S. Yang, Process Biochem. 37/8 (2002) 901.
  4. A.D. Bholay, D.J. Gadekar, S.K. Sawant, S.M. Sonawane, Int. J. Curr. Microbiol. App. Sci. 2/3 (2013) 19.
  5. M.S. Perdani, M. Faturrohman, D.N. Putri, H. Hermansyah, AIP Conf. Proc. 2193 (2019) 030020.
  6. J. MacLachlan, A.T.L. Wotherspoon, R.O. Ansell, C.J.W. Brooks, J. Steroid Biochem. 72/5 (2000) 169.
  7. P.H. Lolekha, Y. Jantaveesirirat, J. Clin. Lab. Anal. 1 6/6 (1992) 405.
  8. E. Dako, A.-M. Bernier, A.T. Dadie, C.K. Jankowski, Chem. Biol. 17 (2012) 19.
  9. M.S. Perdani, M.D. Juliansyah, D.N. Putri, T.S. Utami, C. Hudaya, M. Yohda, et al., Int. J. Technol. 11/4 (2020) 754.
  10. M.L. Wong, J.R. Krycer, J.G. Burchfield, D.E. James, Z. Kuncic, FEBS Open Bio. 5 (2015) 226.
  11. H.M. Atta, J. Saudi Chem. Soc. 19/1 (2015) 12.
  12. M.S. Perdani, M. Sahlan, S. Farida, D.N. Putri, S.A. Soekanto, H. Hermansyah, AIP Conf. Proc. 2092 (2019) 030027.
  13. A. Hasani, A. Kariminik, K. Issazadeh, Int. J. Adv. Biol. Biomed. Res. 2/1 (2014) 63.
  14. A. Vrielink, Subcell. Biochem. 51 (2010) 137.
  15. N.E.-A. El-Naggar, H.M. Soliman, N.M. El Shweihy, Sci. Rep. 8 (2018) 2706.
  16. A.R.C. Braga, A.P. Manera, J.d.C. Ores, L. Sala, F. Maugeri, S.J. Kalil, Food Technol. Biotech. 51/1 (2013) 45.
  17. T.J.G. Salva, A.M. Liserre, A.L. Moretto, M.A.T. Zullo, G. Ventrucci, T.J.B. Menezes, 3 Rev. Microbiol. 30 (1999) 315.
  18. A. Rogers, Y. Gibon, In: J. Schwender (Ed.), Plant Metabolic Networks, Springer, New York, USA, 2009, p.71.
  19. Y. Yano, Y. Watanabe, K. Matsuzaki, B.B.A. Biomembranes. 1863/3 (2021) 183532.
  20. C. Wang, Y. Cao, B. Sun, B. Ji, M.J.R. Nout, J. Wang, et al., World J. Microb. Biot. 24 (2008) 2149.
  21. U. Patil, N. Mokashe, J. Shaha, S. Arthekar, H. Jagatap, Ultrason. Sonochem. 40/Part A (2018) 201.
  22. A.G. Margoni, Enzyme Kinetics: A Modern Approach, 1st ed., John Wiley & Sons, Hoboken, New York, USA, 2003.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.