•  
  •  
 

Abstract

In geotechnical engineering, large deformation in soil materials is rarely simulated using numerical methods, particularly the finite element method and finite difference method, because they experience difficulties in representing the postfailure soil behavior. As an alternative to these methods, the smoothed particle hydrodynamics (SPH) method has recently been adopted to represent soil behavior. The SPH method is a Lagrangian, mesh-free numerical method in which the materials are modeled as a set of particles. In this method, soil behavior can be represented via the Drucker–Prager elasto–plastic failure criterion. Thus, this method can be used to simulate postfailure soil behavior and large deformation in soil materials. This study attempts to analyze large deformation of soil due to an extremely gentle slope and a thin water layer (referred to as the water film). The model is simulated using a C++ platform called PersianSPH. The results demonstrate that lateral deformation can occur in such a geometry because of the effective stress changes during liquefaction.

References

  1. G.R. Liu, M.B. Liu, Comput. Mech. 33 (2004) 491.
  2. L.B. Lucy, Astron. J. 82/12 (1977) 1013.
  3. R.A. Gingold, J.J. Monaghan, Mon. Not. R. Astron. Soc. 181/3 (1977) 375.
  4. M.R. Islam, M.A. Rahman, K. Hayano, SN Appl. Sc. 2/4 (2020) 14.
  5. H. Niroumand, M.E.M. Mehrizi, M. Saaly, Geomech. Eng. 11/1 (2016) 39.
  6. Y. Huang, Z. Dai, Eng. Geol. 168 (2014) 86.
  7. Z. Wang, H.T. Shen, J. Hydraul. Eng. 125/11 (1999) 1217.
  8. H. H. Bui, R. Fukagawa, and K. Sako, “Smoothed particle hydrodynamics for soil mechanics,” in 1 Numerical Methods in Geotechnical Engineering. London: Taylor & Francis Group, 2006.
  9. K. Maeda, M. Sakai, J. Appl. Mech. 7 (2004) 775.
  10. M. Naili, T. Matsushima, Y. Yamada, J. Appl. Mech. 8 (2005) 591.
  11. R.P. Suntarto, J. Sjah, R.R.D. Rika, E. Bahsan, IOP C. Ser. Earth Env. 1169/1 (2023) 012039.
  12. T. Kokusho, Soil Dyn. Earthq. Eng. 23/7 (2003) 585.
  13. E. Bahsan, B. Andreatama, W.A. Prakoso, B.S. Soepandji, R.R.D.R. Marthanty, Int. J. Technol. 12/5 (2021) 965.
  14. M.G. Korzani, S.A. Galindo-Torres, A. Scheuermann, D.J. Williams, Acta Geotech. 13/2 (2018) 303.
  15. M.G. Korzani, S.A. Galindo-Torres, A. Scheuermann, D.J. Williams, Water Sci. Eng. 10/2 (2017) 143.
  16. M.I. Tanjung, M. Irsyam, A. Sahadewa, S. Iai, T. Tobita, H. Nawir, Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering, Beijing, China, 2022, p.565.
  17. T. Kokusho, Soils Found. 40/5 (2000) 99.
  18. M.B. Liu, G.R. Liu, Arch. Comput. Method. E. 17/1 (2010) 25.
  19. H.H. Bui, K. Sako, R. Fukagawa, J.C. Wells, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008, p.570.
  20. M.G. Korzani, S.A. Galindo-Torres, D. Williams, A. Scheuermann, Appl. Mech. Mater. 553 (2014) 168.
  21. M.G. Korzani, S.A. Galindo-Torres, A. Scheuermann, D.J. Williams, Comput. Geotech. 94 (2018) 31.
  22. W. Rahayu, Nurizkatilah, E. Bahsan, IOP C. Ser. Earth Env. 622/1 (2021) 012016.
  23. W. Rahayu, I. Yuliyanti, E. Bahsan, IOP C. Ser. Earth Env. 622/1 (2021) 012015.
  24. I.M. Watkinson, R. Hall, Nat. Geosci. 12/11 (2019) 940.
  25. T. Kokusho, J. Geotech. Geoenviron. 125/10 (1999) 817.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.