•  
  •  
 

Abstract

The study explores axisymmetric endwall contouring with emphasis on the design of novel endwalls capable of heat load reduction. Optimizations with parameterization numerically determined by the endwall of flat shape led to the endwall of the contoured shape with substantial depletion of heat transfer in the passage of the vane. Heat transfer attributes for the generated contoured endwalls were analyzed for the exit Reynolds number of 2 × 106 . Endwall three-dimensional contouring resulted in remarkable changes in secondary flow vortices, jet-to-secondary flow interaction, and film cooling effectiveness on the flat endwall. The results pointed out that the axisymmetric convergent contouring causes a significant increase in endwall film cooling, especially for the hard-to-cooled regions throughout the vane, but the level of benefit is significantly affected by the blowing ratios. The obtained efficacy demonstrated the flow impact of the cross-passage on the proliferation of the coolant on top of the flat endwall and the amenability for jet lift-off at elevated blowing ratios. The optimal mass flow rate selection of the current work could identify the passage of the endwall, contoured with superior axial turbine efficiency and durability than that of the flat endwall.

References

  1. Y. Liu, Y. Rao, L. Yang, Int. J. Therm. Sci. 153 (2020) 106337.
  2. L. Wang, X. Li, J. Ren, H. Jiang, Int. J. Therm. Sci. 149 (2020) 106176.
  3. M. Thomas, T. Povey, Proc. Inst. Mech. Eng. G. 231/14 (2017) 2689.
  4. P. Chen, X. Li, J. Ren, H. Jiang, T. Simon, Int. J. Heat Mass Transf. 137 (2019) 690.
  5. K. Zhang, J. Li, Z. Li, L. Song, Int. J. Heat Mass Transf. 129 (2019) 618.
  6. Z. Cao, C. Wang, J. Zhao, X. Hao, Z. Song, B. Liu, Int. J. Turbo Jet-Engines. (2023).
  7. T.J. Praisner, E. Allen-Bradley, E.A. Grover, D.C. Knezevici, S.A. Sjolander, J. Turbomach. 135/6 (2013) 061006.
  8. M. Rezasoltani, M.T. Schobeiri, J.C. Han, J. Turbomach. 136/9 (2014) 091009.
  9. D. Liu, Z. Tao, X. Luo, Appl. Therm. Eng. 140 (2018) 295.
  10. P. Chen, L. Wang, X. Li, J. Ren, H. Jiang, Int. J. Heat Mass Transf., 147 (2020) 118995.
  11. S.P. Lynch, Ph.D Thesis, Virginia Polytechnic Institute and State University, Virginia, USA, 2011.
  12. Z. Robison, Ph.D Thesis, New Mexico State University, New Mexico, 2022.
  13. J. Li, X. Yan, K. He, J. Turbomach. 142/5 (2020) 051006.
  14. A. Mensch, K.A. Thole, J. Turbomach. 138/3 (2016) 031007.
  15. S. Hussain, J. Liu, B. Sunden, Appl. Therm. Eng. 168 (2020) 114844.
  16. L. Song, Z. Guo, J. Li, Z. Feng, J. Propuls. Power. 34/1 (2018) 234.
  17. L. Song, P. Zhu, J. Li, Z. Feng, Appl. Therm. Eng. 110 (2017) 504.
  18. K.V. Panchal, S. Abraham, S.V. Ekkad, W.F. Ng, A.S. Lohaus, M.E. Crawford, Am. Soc. Mech. Eng. 44700 (2012) 151.
  19. B. Bai, Z. Li, J. Li, S. Mao, W.F. Ng, J. Eng. Gas Turbine Power. 144/2 (2022) 021020.
  20. P. Chen, Q. Xue, X. Li, J. Ren, H. Jiang, Int. J. Therm. Sci. 158 (2020) 106562

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.