•  
  •  
 

Abstract

Mouse dynamics authentication is a method for identifying a person by analyzing the unique pattern or rhythm of their mouse movement. Owing to its distinctive properties, such mouse movements can be used as the basis for security. The development of technology is followed by the urge to keep private data safe from hackers. Therefore, increasing the accuracy of user classification and reducing the false acceptance rate (FAR) are necessary to improve data security. In this study, we propose to combine the K-nearest neighbor method and simple random sampling and obtain a sample from a dataset to improve the classification of users and attackers. The results show that our proposed method has high accuracy for implement to practical system and reports the best results than previous research with a FAR of 0.037. Therefore, this method can be implemented in a real login system. The high false rejection rate of our proposed method will not be a problem because the most important thing in the login system is denying the attacker system access.

References

  1. L. Gao, Y. Lian, H. Yang, R. Xin, Z. Yu, W. Chen, W. Liu, Y. Zhang, Y. Zhu, S. Xu, S. Guo, Y. Cheng, International Wireless Communications and Mobile Computing, Limassol, Cyprus, 2020, p. 210
  2. S.J. Quraishi, S.S. Bedi, Int. J. Sci. Technol. Res. 8/10 (2019) 3500
  3. T. Hu, W. Niu, X. Zhang, X. Liu, J. Lu, Y. Liu, Sec. Commun. Netw. (2019) 3898951
  4. M. Antal, E. Egyed-Zsigmond, Int. Eng. Technol. Biometrics. 8/5 (2019) 285
  5. W. Kaixin, L. Hongri, W. Bailing, H. Shujie, S. Jia, International Conference on Information Engineering, New York, U.S.A., 2017, p. 1
  6. S. Fu, D. Qin, D. Qiao, G.T. Amariucai, IEEE Conference on Communications and Network Security, Avignon, France, 2020, p. 1
  7. P. Chong, Y. Elovici, A. Binder, IEEE Trans. Inf. Forensics Sec. 15/1 (2020) 1086
  8. S. Mondal, P. Bours, International Conference on Identity, Security and Behavior Analysis, Sendai, Japan, 2016, p. 1
  9. L. Ma, C. Yan, P. Zhao, M. Wang, Int. Conf. Syst. Man Cybern. (2016) 000211
  10. M. Karim, H. Heickal, M. Hasanuzzaman, 9th International Conference on Machine Learning and Computing, Association for Computing Machinery, New York, U.S.A., 2017, p. 122
  11. A. R. Lubis, M. Lubis, Al-Khowarizmi, Bull. Electr. Eng. Inform. 9/1 (2020) 326
  12. A. Khan, S.J. Quraishi, S.S. Bedi, Int. J. Rec. Technol. Eng. 8/4 (2019) 2277
  13. Siuly, Y. Li, P. Wen, Int. J. Biomed. Eng. Technol. 7/4 (2011) 390
  14. H. Sohn, Philos. Tran. Roy. Soc. Math. Phys. Eng. Sci. 365/1851 (2007) 539
  15. B. Sayed, I. Traore, 00I. Woungang, M.S. Obaidat, IEEE Sys. J. 7/2 (2013) 262
  16. C. Shen, Z. Cai, X. Guan, Y. Du, R.A. Maxion, IEEE Trans. Inform. Forensics Sec. 8/1 (2012) 16
  17. G.A.A.J. Alkubaisi, S.S. Kamaruddin, H. Husni, N.S. Al-Saifi, Int. J. Adv. Trends Com. Sci. Eng. 9/4 (2020) 4863
  18. N. D’Lima, J. Mittal, International Conference on Communication, Information & Computing Technology, Mumbai, India, 2015, p. 1.
  19. F.M. Al-Athari, A.K. Hussain, Int. J. Com. Inform. Technol. 3/4 (2014) 787
  20. D.K. Dinesh, P.V. Rao, Int. J. Intell. Unmanned Sys. 8/1 (2020) 55
  21. J. Xu, Y. Zhang, D. Miao, Inform. Sci. 507 (2020) 772.
  22. A. Fülöp, L. Kovács, T. Kurics, E. Windhager-Pokol, Balabit Mouse Dynamics Challenge data set, GitHub, https://github.com/balabit/Mouse-Dynami cs-Challenge, 2016

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.