Abstract
Mouse dynamics authentication is a method for identifying a person by analyzing the unique pattern or rhythm of their mouse movement. Owing to its distinctive properties, such mouse movements can be used as the basis for security. The development of technology is followed by the urge to keep private data safe from hackers. Therefore, increasing the accuracy of user classification and reducing the false acceptance rate (FAR) are necessary to improve data security. In this study, we propose to combine the K-nearest neighbor method and simple random sampling and obtain a sample from a dataset to improve the classification of users and attackers. The results show that our proposed method has high accuracy for implement to practical system and reports the best results than previous research with a FAR of 0.037. Therefore, this method can be implemented in a real login system. The high false rejection rate of our proposed method will not be a problem because the most important thing in the login system is denying the attacker system access.
References
- L. Gao, Y. Lian, H. Yang, R. Xin, Z. Yu, W. Chen, W. Liu, Y. Zhang, Y. Zhu, S. Xu, S. Guo, Y. Cheng, International Wireless Communications and Mobile Computing, Limassol, Cyprus, 2020, p. 210
- S.J. Quraishi, S.S. Bedi, Int. J. Sci. Technol. Res. 8/10 (2019) 3500
- T. Hu, W. Niu, X. Zhang, X. Liu, J. Lu, Y. Liu, Sec. Commun. Netw. (2019) 3898951
- M. Antal, E. Egyed-Zsigmond, Int. Eng. Technol. Biometrics. 8/5 (2019) 285
- W. Kaixin, L. Hongri, W. Bailing, H. Shujie, S. Jia, International Conference on Information Engineering, New York, U.S.A., 2017, p. 1
- S. Fu, D. Qin, D. Qiao, G.T. Amariucai, IEEE Conference on Communications and Network Security, Avignon, France, 2020, p. 1
- P. Chong, Y. Elovici, A. Binder, IEEE Trans. Inf. Forensics Sec. 15/1 (2020) 1086
- S. Mondal, P. Bours, International Conference on Identity, Security and Behavior Analysis, Sendai, Japan, 2016, p. 1
- L. Ma, C. Yan, P. Zhao, M. Wang, Int. Conf. Syst. Man Cybern. (2016) 000211
- M. Karim, H. Heickal, M. Hasanuzzaman, 9th International Conference on Machine Learning and Computing, Association for Computing Machinery, New York, U.S.A., 2017, p. 122
- A. R. Lubis, M. Lubis, Al-Khowarizmi, Bull. Electr. Eng. Inform. 9/1 (2020) 326
- A. Khan, S.J. Quraishi, S.S. Bedi, Int. J. Rec. Technol. Eng. 8/4 (2019) 2277
- Siuly, Y. Li, P. Wen, Int. J. Biomed. Eng. Technol. 7/4 (2011) 390
- H. Sohn, Philos. Tran. Roy. Soc. Math. Phys. Eng. Sci. 365/1851 (2007) 539
- B. Sayed, I. Traore, 00I. Woungang, M.S. Obaidat, IEEE Sys. J. 7/2 (2013) 262
- C. Shen, Z. Cai, X. Guan, Y. Du, R.A. Maxion, IEEE Trans. Inform. Forensics Sec. 8/1 (2012) 16
- G.A.A.J. Alkubaisi, S.S. Kamaruddin, H. Husni, N.S. Al-Saifi, Int. J. Adv. Trends Com. Sci. Eng. 9/4 (2020) 4863
- N. D’Lima, J. Mittal, International Conference on Communication, Information & Computing Technology, Mumbai, India, 2015, p. 1.
- F.M. Al-Athari, A.K. Hussain, Int. J. Com. Inform. Technol. 3/4 (2014) 787
- D.K. Dinesh, P.V. Rao, Int. J. Intell. Unmanned Sys. 8/1 (2020) 55
- J. Xu, Y. Zhang, D. Miao, Inform. Sci. 507 (2020) 772.
- A. Fülöp, L. Kovács, T. Kurics, E. Windhager-Pokol, Balabit Mouse Dynamics Challenge data set, GitHub, https://github.com/balabit/Mouse-Dynami cs-Challenge, 2016
Recommended Citation
Chandranegara, Didih Rizki; Ashari, Anzilludin; Sari, Zamah; Wibowo, Hardianto; and Suharso, Wildan
(2023)
"User Classification Based On Mouse Dynamic Authentication Using K-Nearest Neighbor,"
Makara Journal of Technology: Vol. 27:
Iss.
1, Article 5.
DOI: 10.7454/mst.v27i1.1557
Available at:
https://scholarhub.ui.ac.id/mjt/vol27/iss1/5