•  
  •  
 

Abstract

Software for interactive musculoskeletal modeling applies diverse scientific and technological concepts to stimulate the movement of musculoskeletal figures. Several tools are available for biomechanical analysis in studying motion and capturing the musculoskeletal representation data to facilitate further evaluation for muscle activation. Musculoskeletal software, such as the OpenSim model, animates, and measures in 3D the structural movement of bones, muscles, joints, ligaments, and such structures in the human body. Users apply graphical interfaces to manipulate the movement science for fast and accurate analysis. OpenSim simulation software features a user-friendly interface to allow the proper clinical application in biomechanics and rehabilitation research. The exploitation of the potential features and outputs is significant to optimize electromyography technology for musculoskeletal simulation. Emphasis on testing fundamental hypotheses with posture experimentation and simulation encourages the adoption of OpenSim in various biomechanical models.

Bahasa Abstract

Perangkat lunak untuk pemodelan muskuloskeletal interaktif menerapkan beragam konsep ilmiah dan teknologi untuk merangsang pergerakan struktur muskuloskeletal. Beberapa metode tersedia untuk melakukan analisis biomekanis dalam mempelajari gerakan dan menangkap data representasi muskuloskeletal untuk memfasilitasi evaluasi lebih lanjut untuk aktivasi otot. Perangkat lunak muskuloskeletal, seperti model OpenSim, menganimasikan, dan mengukur gerakan struktural tulang, otot, sendi, ligamen, dan struktur seperti itu dalam tubuh manusia, dengan representasi 3D. Pengguna menerapkan antarmuka grafis untuk memanipulasi ilmu gerakan untuk analisis yang cepat dan akurat. Perangkat lunak simulasi OpenSim memiliki antarmuka yang ramah pengguna untuk memungkinkan aplikasi klinis yang tepat dalam penelitian biomekanik dan rehabilitasi. Eksploitasi fitur dan output yang potensial sangat penting untuk mengoptimalkan teknologi elektromiografi untuk simulasi muskuloskeletal. Penekanan pada pengujian hipotesis mendasar dengan eksperimen dan simulasi postur mendorong adopsi OpenSim dalam berbagai model biomekanik.

References

F.C. Anderson, M.G. Pandy, Gait Posture 17/2 (2003) 159.

R.R. Neptune, F.E. Zajac, S.A. Kautz, J. Biomech. 37/6 (2004) 817.

S. Arnold, F.C. Anderson, M.G. Pandy, S.L. Delp, J. Biomech. 38/11 (2005) 2181.

S.A. Kimmel, M.H. Schwartz, Gait Posture 23/2 (2006) 211.

M.Q. Liu, F.C. Anderson, M.G. Pandy, S.L. Delp, J. Biomech. 39/14 (2006) 2623.

K.M. Steele, A. Seth, J.L. Hicks, M.S. Schwartz, S.L. Delp, J. Biomech. 43/11 (2010) 2099.

S.J. Piazza, S.L. Delp, J. Biomech. Eng. 123/6 (2001) 599.

S.G. McLean, A. Su, A.J.V.D. Bogert, J. Biomech. Eng. 125/6 (2003) 864.

J.A. Reinbolt, A. Seth, S.L. Delp, Procedia IUTAM 2 (2011) 186.

J. Rasmussen, S. Tørholm, M. de Zee, Int. J. Ind. Ergon. 39/1 (2009) 52.

J.Z. Wu, S.S. Chiou, C.S. Pan, Ann. Biomed. Eng. 37/6 (2009) 1177.

J.P. Paul, Ann. Rheum. Dis. 48/3 (1989) 179.

S.A. Niyogi, E.H. Adelson, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1 (1994) 469.

S. Sarkar, P.J.J. Phillips, Z. Liu, I.R.I.R. Vega, P. Grother, K.W.K.W. Bowyer, IEEE Trans. Pattern Anal. Mach. Intell. 27/2 (2005) 162.

S. Armand, G. Decoulon, A.B. Mazure, Efort Open Rev. 1/12 (2016) 448.

T.L. Switaj, F.G. O’Connor (Ed.), The Sports Medicine Resource Manual, 1st ed., Elsevier, Amsterdam, 2008, p.536.

D. Cunado, M.S. Nixon, J.N. Carter, Lecture Notes Comput. Sci. 1206 (1997) 93.

C. BenAbdelkader, R. Cutler, L. Davis, Proceedings 5th IEEE International Conference on Automatic Face Gesture Recognition, Washington, DC, USA, 2002, p.372.

R. Urtasun, P. Fua, Proceedings Sixth IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004, p.17.

J. Han, B. Bhanu, IEEE Trans. Pattern Anal. Mach. Intell. 28/2 (2006) 316.

J. Liu, N. Zheng, Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2007, p.663.

A. Hayder, J. Dargham, A. Chekima, G.M. Ervin, Int. J. Comput. Electron. Eng. 3/4 (2011) 477.

C. Wan, L. Wang, V.V Phoha, ACM Comput. Surv. 51/5 (2018) 1.

K. Nakajima, Y. Mizukami, K. Tanaka, T. Tamura, IEEE Trans. Biomed. Eng. 47/11 (2000) 1534.

M. Otero, Proceedings of SPIE The International Society for Optical Engineering, Florida, United States, 2005, p.538.

H. Ailisto, M. Lindholm, J. Mäntyjärvi, E. Vildjiounaite, S.-M. Mäkelä, Proceedings of SPIE The International Society for Optical Engineering, Florida, United States, 2005, p.7

R. Chauhan, J. Vyas, Int. J. Sci. Res. Dev. 1/2 (2013) 2321.

M. Cardona, C.E.G. Cena, IEEE Access 7 (2019) 92709.

J. Yu, S. Zhang, A. Wang, W. Li, Int. Conf. Adv. Mechatron. Syst. (2020) 278.

M. Asif, et al., IEEE Access 9 (2021) 85956.

A. Seth, M. Sherman, J.A. Reinbolt, S.L. Delp, Procedia IUTAM 2 (2011) 212.

J.W. Holmes, Am. J. Physiol. Adv. Physiol. Educ. 30/2 (2006) 67.

A. Seth, et al., PLoS Comput. Biol. 14/7 (2018) e1006223.

J.B. Langholz, G. Westman, M. Karlsteen, Procedia Eng. 147 (2016) 281.

K.M. Lai, A.S. Arnold, J.M. Wakeling, Ann. Biomed. Eng. 45/12 (2017) 2762.

A. Rajagopal, C.L. Dembia, M.S. DeMers, D.D. Delp, J.L. Hicks, S.L. Delp, IEEE Trans. Biomed. Eng. 63/10 (2016) 2068.

V. Carbone, et al., J. Biomech. 48/5 (2015) 734.

L. Modenese, A.T.M. Phillips, A.M.J. Bull, J. Biomech. 44/12 (2011) 2185.

M.D.K. Horsman (Ed.), The Twente Lower Extremity Model, Twente Medical Systems International, Netherlands, 2007, p.159.

M.E. Wootten, M.P. Kadaba, G.V.B. Cochran, J. Orthop. Res. 8/2 (1990) 259.

J. McFadyen, D.A. Winter, J. Biomech. 21/9 (1988) 733

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.