•  
  •  
 

Abstract

The melting of a phase change material (PCM) in a cavity with a gradient of hot wall inclination was simulated numerically using five models, namely, Model-A, Model-B, Model-C, Model-D, and Model-E with gradients of −2, −4, ∞, 4, and 2, respectively. The PCM was paraffin wax, which was melted using an enthalpy porosity technique with a pressure-based method. Model-A was found to be the best model. For the completion of the melting process, the models were assigned with the liquid fraction of 1. Model-A required the shortest time, followed by Model-B, Model-C, Model-E, and Model-D, respectively. Compared with Model-C, Model-A was 9.4% faster, Model-B was 3.8% faster, Model-D was 2.3% slower, and Model-E was 3.2% slower.

Bahasa Abstract

Peleburan material berubah fasa dalam sebuah rongga dengan gradien kemiringan dinding panas telah disimulasikan secara numerik menggunakan lima model, yaitu Model-A, Model-B, Model-C, Model-D, dan Model-E dengan gradien kemiringan sebesar 2, 4, ∞, 4, dan 2. Material berubah fasa yang digunakan adalah parafin, proses peleburan menggunakan teknik enthalpy porosity dengan metode pressure-based. Model-A ditemukan sebagai model terbaik. Untuk penyelesaian proses peleburan, ditandai dengan fraksi cair bernilai 1. Model-A membutuhkan waktu tersingkat, diikuti oleh Model-B, Model-C, Model-E, dan Model-D. Dibandingkan dengan Model-C, Model-A 9,4% lebih cepat, Model-B 3,8% lebih cepat, Model-D 2,3% lebih lambat, dan Model-E 3,2% lebih lambat.

References

  1. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev. 13/2 (2009) 318.
  2. K. Kavitha, S. Arumugam, Int. J. Renew. Energy Resour. 3 (2013) 1.
  3. B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, Appl. Thermal Eng. 23/3 (2003) 251.
  4. A. Agarwal, R.M. Sarviya, Mater. Today Proc. 4/2 (2017) 779.
  5. M.M. Farid, A.M. Khudhair, S.A. K. Razack, S. Al-Hallaj, Energy Convers. Manag. 45/9–10 (2004) 1597.
  6. N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Energy Build. 59 (2013) 82.
  7. V. Shatikian, G. Ziskind, R. Letan, Int. J. Heat Mass Transf. 51/5–6 (2008) 1488.
  8. T.M. Hamdani, M. Irwansyah, Mahlia, Procedia Eng. 50 (2012) 122.
  9. A.D. Korawan, S. Soeparman, W. Wijayanti, D. Widhiyanuriyawan, Model. Simul. Eng. (2017).
  10. A.D. Korawan, S. Soeparman, W. Wijayanti, D. Widhiyanuriyawan, Model. Simul. Eng. (2017) 1.
  11. A.V. Arasu, A.S. Mujumdar, Int. Commun. Heat Mass Transf. 39/1 (2012) 8.
  12. N.S. Dhaidan, J.M. Khodadadi, T.A. Al-Hattab, S.M. Al-Mashat, Int. J. Heat Mass Transf. 66 (2013) 672.
  13. H. Shokouhmand, B. Kamkari, Exp. Therm. Fluid Sci. 50 (2013) 201.
  14. T. Kousksou, M. Mahdaoui, A. Ahmed, A.A. Msaad, Energy 64 (2014) 212.
  15. A. Ebrahimi, A. Dadvand, Alex. Eng. J. 54/4 (2015) 1003

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.