•  
  •  
 

Abstract

Massive loss of power is a concern for many countries because of the high power consumption of alternating current (AC) motors. The motor speed should be controlled to alleviate this problem and save more power. This paper proposes a simple simulation for a variable speed driver (VSD) to control the three-phase induction motor speed. The VSD consists of three parts. The converter performs from full bridge diodes to convert single-phase AC voltage into direct current voltage, and then this voltage is filtered by the RL filter and transferred to the last part, which is the inverter. The model was simulated by using MATLAB/Simulink. Findings show that the VSD controller provides sufficient control over the AC induction motor speed.

Bahasa Abstract

Hilangnya daya secara besar-besaran menjadi perhatian banyak negara yang menjadi penyebab tingginya konsumsi daya motor arus bolak-balik (AC). Kecepatan motor harus dikontrol untuk mengurangi masalah ini dan menghemat lebih banyak daya. Makalah ini mengusulkan simulasi sederhana untuk penggerak kecepatan variabel (Variable Speed Driver, VSD) untuk mengontrol kecepatan motor induksi tiga fase. VSD terdiri dari tiga bagian. Konverter menjalankan fungsi dioda jembatan penuh (full bridge diode) untuk mengubah tegangan AC fase tunggal menjadi tegangan arus searah, dan kemudian tegangan ini disaring oleh filter RL dan ditransfer ke bagian terakhir, yaitu inverter. Model ini disimulasikan dengan menggunakan MATLAB/Simulink. Temuan menunjukkan bahwa pengontrol VSD memberikan cukup kendali atas kecepatan motor induksi AC

References

  1. B.L Theraja (Ed.), Electrical Technology, New Indian Book Agency, Delhi, 2008.
  2. S.H. Güroca (Ed.), Industrial Motion Control Motor Selection Drives Controller Tuning Applications, John Wiley & Sons Ltd., New York City, 2016, p.320.
  3. F.D. Petruzella (Ed.), Electric Motors and Control Systems, 3rd ed., McGraw-Hill, New York City, 2010.
  4. C.B. Smith, Kelly E. Parmenter, Energy Management Principles, 2nd ed., Elsevie, Amsterdam, November 2016, p. 264.
  5. R. Kent, Energy Management in Plastics Processin: Strategies, Targets, Techniques, and Tools, 3rd ed., Elsevier , Amsterdam, 2018, p.105.
  6. A.Z. Latt, N.N. Win, Int. Conf. Edu. Technol. Comput. (2009) 30.
  7. T. Kume, T. Iwakane, IEEE Trans. Ind. Appl. 23/5 (1987) 872.
  8. R. Saidur, S. Mekhilef, M.B. Ali, A. Safari, H.A. Mohammed, Renew. Sustain. Energy Rev. 16/1 (2012) 543.
  9. M.J.S. Zuberi, A. Tijdink, M.K. Patel, Appl. Energy 205 (2017) 85.
  10. N.K. Mitra (Ed.), Principles of Artificial Lift. Allied Publishers Pvt. Ltd., New Delhi, 2012, p.454.
  11. R. Kent, Energy Management in Plastics Processin: Strategies, Targets, Techniques, and Tools, 3rd ed., Elsevier , Amsterdam, 2018, p.144.
  12. A.K. Miller. ASME Int. Mech. Eng. Congr. Expo. 50688 (2016) V014T07A012.
  13. R.D. Shukla, R.K. Tripathi, G. Sandeep, Int. Conf. Power Contr. Embed. Syst. (2010) 1.
  14. R. Khan, M.M.S. Riyadh, Int. J. Comput. Electr. Eng. 3/6 (2011) 865.
  15. A. Gupta, Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 6/5 (2017) 4102.
  16. C.B. Smith, E. Kelly (Ed.) Parmenter, Energy Management Principles, 2nd ed., Elsevie, Amsterdam, November 2016, p.49

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.