•  
  •  
 

Abstract

Although biogas has been primarily produced through liquid anaerobic digestion, this method leads to the floating and stratification of fibers and non-homogeneous mixing, which can reduce the biogas yield. Alternatively, biogas can be produced by the solid-state anaerobic digestion (SS-AD) of organic material with a high solid content, such as corn cobs. We investigated the co-digestion of food waste and corn cobs as a biomass feedstock for SS-AD in biogas production. We measured the effects of the total solid (TS) content, percentage of food waste, and reduction in volatile solids (VS), from which we determined its appropriate kinetic model. We found that the SS-AD of food waste with corn cobs produced a high biogas yield of 543 mL/g VS at a TS content of 22% and a food waste content of 20%. The first-order kinetics model for biogas production during SS-AD of the tested corn cob and food waste yielded an R2 value in the range of 0.91–0.94. The main contributor to the biogas production during the SS-AD of the corn cobs and food waste was the reduction in VS. A positive linear relationship was observed between the biogas yield and the reduction of VS.

Bahasa Abstract

Biogas sebagian besar diproduksi melalui liquid anaerobic digestion (L-AD). Tetapi, metode ini mengakibatkan serat mengapung, stratifikasi dan pencampuran yang tidak homogen sehingga menurunkan yield biogas. Biogas dapat diproduksi menggunakan solid-state anaerobic digestion (SS-AD) pada kandungan padatan tinggi, seperti tongkol jagung. Penelitian ini mengkaji limbah makananan sebagai co-digestion dan tongkol jagung sebagai bahan baku biomassa untuk produksi biogas melalui SS-AD. Penelitian juga mengkaji pengaruh dari total padatan (TS), persentase limbah makanan, dan reduksi volatil solid (VS) serta menentukan model kinetika. Hasil penelitian menunjukkan bahwa SS-AD limbah makanan dan tongkol jagung menghasilkan yield biogas tertinggi sebesar 543 mL/g VS pada TS 22% dan limbah makanan 20%. Produksi biogas dari tongkol jagung dan limbah makanan yang diuji mengikuti model kinetika orde pertama dengan R2 0,91-0,94. Faktor utama pada produksi biogas dari tongkol jagung dan limbah makanan adalah reduksi VS. Yield biogas dan limbah makanan. Biogas yield berhubungan linier dengan reduksi VS.

References

  1. L. Deressa, S. Libsu, R.B. Chavan, D. Manaye, A. Dabassa, Environ. Ecol. Res. 3/3 (2015) 65.
  2. E.C. Ugwuoke, N.P. Nwachukwu, M.U. Ude, I. Ofili, F.F. Abur, Int. J. Sci. Eng. Technol. Res. 4/9 (2015) 3096.
  3. B. Stastistical, Statistical Review of World Energy 2020, London, 2020.
  4. D.A. Mardiana, R.S.T. Kartoatmodjo, S. Kasmungin, Indones. J. Ener. 1/2 (2018) 113.
  5. G. Mohammed, Glob. J. Pollut. Hazard. Waste Manag. 3/1 (2015) 103.
  6. A. Teghammar, G. Forgács, I. Sárvári, M.J. Taherzadeh, Appl. Energ. 116 (2014) 125.
  7. IRENA, Renewable capacity statistics 2020 International Renewable Energy Agency (IRENA), Abu Dhabi, 2020.
  8. L.N. Liew, J. Shi, Y. Li, Biomass Bioenerg. 46 (2012) 125.
  9. Gl.A.I. Network, Indonesia Grain and Feed Update July 2016, 2016.
  10. FAO, The State of Food and Agriculture 2019, Moving forward on food loss and waste reduction, Rome, 2019.
  11. C. Rattanapan, L. Sinchai, T.T. Suksaroj, D. Kantachote, W. Ounsaneha, Environ. 6/16 (2019) 1.
  12. O. Karthikeyan, E. Trably, S. Mehariya, N. Bernet, J. Wong, H. Carrere, Bioresour. Technol. 249 (2018) 1025.
  13. G. Lin, X. Ge, Y. Li, Bioresour. Technol. 169 (2014) 468.
  14. A. Khalid, M. Arshad, M. Anjum, T. Mahmood, L. Dawson, Waste Manag. 31/8 (2011) 1737.
  15. L. Yang, Y. Li, Bioresour. Technol. 171 (2014) 233.
  16. C. Zhang, H. Su, J. Baeyens, T. Tan, Renew. Sustain. Energ. Rev. 38 (2014) 383.
  17. D. Brown, Y. Li, Bioresour. Technol. 127 (2013) 275.
  18. APHA, Standard Methods for the Examination of Water and Wastewater Part 1000 Standard Methods for the Examination of Water and Wastewater, 2005.
  19. V. Vaviln, L.Y. Lokshina, J.J.P.Y, J. Rintala, Bioresour. Technol. 94/1 (2004) 69.
  20. G.K. Kafle, S.H. Kim, Appl. Energ. 103 (2013) 61.
  21. L. Su, et al., Archaea. (2020) 1.
  22. K. Paritosh, N. Pareek, A. Chawade, V. Vivekanand, Sci. Rep. December 2018 (2019) 1.
  23. S. Maamri, M. Amrani, Energ. Procedia. 50 (2014) 352.
  24. J. Sheets, X. Ge, Y. Li, Bioresour. Technol. 180 (2015) 296.
  25. Z. Zahan, M.Z. Othman, W. Rajendram, Biomed. Res. Int. (2016) 1.
  26. X. Chen, W. Yan, K. Sheng, M. Sanati, Bioresour. Technol., vol. 154, pp. 215–221, 2014.
  27. R. Zhang, et al., Bioresour. Technol. 98 (2017) 929.
  28. M. Peces, S. Astals, J. Mata-Alvarez Environ. Technol. 35 (2014) 3041.
  29. S.K. Pramnik, B.F. Suja, M. Porgemmat, B.K. Pramanik, Proc. 7/600 (2019) 1.
  30. S. Mirmohamadsadeghi, K. Karimi, A. Zamani, H. Amiri, I.S. Horváth, Biomed. Res. Int. (2014) 1.
  31. D. Brown, J. Shi, Y. Li, Bioresour. Technol. 124 (2012) 379.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.