•  
  •  
 

Abstract

This study investigated the utilization of plastic-waste concrete as an effort to reduce urban waste problems. The waste plastic bottles were utilized to form the hollows of the hollow-core slabs (HCSs). The bottles were made of polyethylene terephthalate (PET). As a part of green research to reuse waste material, shredded PET was also added to the concrete mixture to improve the HCS strength. The cast-in-site HCS could be constructed without any difficulties. Three parameters were investigated: the effects of void content, shredded PET content, and steel-fiber (SF) content on the HCS ultimate bending capacity (Mu). Fifteen specimens were tested under static loads until failure, and the results were compared with those of the solid slab. Two different void contents 19% and 24% were studied. The other parameters were the shredded PET content (0.5% and 0.7%) and the SF content (0.19% and 0.32%). The Mu values of the HCS specimens were 12% to 16% less than that of the solid slab. However, the strengths were still within the theoretical capacity of the slab. The addition of the shredded PET could improve the HCS bending capacity by 18% to 38% compared with that of the solid slab. Similar results were also found for the specimens with SFs, whose Mu values were 11% to 46% greater than that of the solid slab.

Bahasa Abstract

Kajian Eksperimen Lempengan Inti Berongga yang Berisi Botol-botol PET Limbah. Kajian ini menginvestigasi pemanfaatan beton limbah plastik sebagai suatu upaya untuk mengurangi masalah limbah perkotaan. Botol-botol plastik limbah dimanfaatkan untuk membentuk rongga-rongga dari lempengan inti berongga (the hollow-core slabs (HCS)). Botol-botol tersebut dibuat dari polietilena tereftalat (PET). Sebagai suatu bagian dari riset awal (green research) untuk menggunakan ulang bahan limbah, PET yang sudah dicacah juga ditambahkan ke campuran beton untuk meningkatkan kekuatan HCS. HCS yang dicor di tempat dapat dikonstruksi tanpa ada kesulitas apapun. Tiga parameter diinvestigasi: efek-efek dari konten kosong, konten PET cacahan, dan konten serat baja (steel-fiber (SF)) pada kapasitas pembengkokan akhir HCS (Mu). Lima belas spesimen diuji dengan beban statis sampai kegagalan, dan hasil-hasilnya dibandingkan dengan hasil uji lempengan padat. Dua konten kosong yang berbeda 19% dan 24% dikaji. Parameter-parameter lainnya adalah konten PET cacahan (0,5% dan 0,7%) serta konten SF (0,19% dan 0,32%). Nilai-nilai Mu spesimen-spesimen HCS adalah 12% sampai 16% lebih kecil dibandingkan dengan nilai-nilai MU lempengan padat. Namun demikian, kekuatannya masih berada di dalam kapasitas teoritis lempengan. Penambahan PET cacahan dapat meningkatkan kapasitas pembengkokan HCS sebesar 18% sampai 38% dibandingkan dengan kapasitas pembengkokan lempengan padat. Hasil-hasil serupa juga diperoleh untuk spesimen-spesimen dengan SFs, dengan nilai-nilai Mu sebesar 11% sampai 46% lebih besar dibandingkan dengan nilai-nilai MU lempengan padat.

References

  1. L.V. Prakashan, J. George, J.B. Edayadiyil, J.M. George, Appl. Mech. Mater. 857 (2017) 107.
  2. M. Rahman, M. Baluch, Arab. J. Sci. Eng. 37/2 (2012) 443.
  3. E. Cuenca, P. Serna, Eng. Compos. Part B 45 (2013) 952.
  4. N.M. Hawkins, S.K. Ghosh. PCI J. January-February (2006).
  5. B. Helen, K. Lundgren, Report No. 02:17, Department of Structural Engineering, Chalmers University of Technology, Göteborg, Sweden 2002, ISSN 1650-5166.
  6. M. Pajari, VTT Tiedotteita Research Notes 2273, 2004, ISBN 951.38.6517.7.
  7. M. Pajari, VTT Research Notes 2292, 2005, ISBN 951.38.6552.5.
  8. American Concrete Institute (ACI) 318-14.
  9. N. Allawi, M.Sc. Thesis, Civil Engineering Department, University of Anbar, Anbar, Iraq, 2014.
  10. S.A. Abed, MSc. Thesis, Al-Nahrain University, Civil Engineering Department, 2016
  11. N.G. Wariyatno, Y. Haryanto, G.H. Sudiboyo. Procedia Eng. 171 (2017) 909.
  12. I.A. Al-Shaarbaf, A.A. Al- Azzawi, R. Abdulsattar, ARPN J. Eng. Appl. Sci. 13/9 (2018).
  13. F. Altun, et al, Constr. Build. Mater. 21 (2006) 654.
  14. K. Noghabai, J. Struct. Eng. ASCE 126/2 (2000) 243.
  15. J. Sjah, J. Chandra, J.I. Rastandi, E. Ariyoeni, Int. J. Civil. Eng. Technol. 9/7 (2018) 1495.
  16. Z.I. Zainab, A.A. Enas, Waste Manag. J. 28 (2008) 20412.
  17. D. Dhaarani, et al. Int. Res. J. Eng. Technol. 5/3 (2018) 3638.
  18. H. Purnomo, et al., Matec Web of Conference 101, 01016 (2017), Sriwijaya International Conference on Engineering, Science and Technology (SICEST 2016).
  19. H.P. Behbahani, B. Nematollahi, M. Farasatpour, ICSECM 2011, Kandy-SriLanka.
  20. J.K. Wight, J.G. Mc Gregor, Reinforced Concrete, Mechanics and Design, 6th edition, Pearson, 2012.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.