•  
  •  
 

Abstract

In this study, optimization techniques applied in designing microstrip bandpass ultra-wideband (UWB) filters are presented. Optimization based on various defected ground structure techniques, resonator designs, and type of dielectric materials is discussed. Microstrip bandpass filters implemented at UWB frequency bands used in wireless communication systems have key features to control frequency response in passband and stopband. Optimization techniques are studied to attain optimum performance of bandpass microstrip filters to ensure minimum insertion loss, high selectivity, compactness, sharp transitions at cut-off frequencies, high return loss, and excellent linearity. Extensive study shows that proper selection of fabrication techniques and type of material optimizes the performance of microstrip filter design, thereby increasing its practicability for emerging wireless communication systems.

Bahasa Abstract

Filter Garis Mikro: Suatu Resensi tentang Rancangan Filter yang Berbeda yang Digunakan di dalam Teknologi Pita Ultra Lebar. Di dalam kajian ini, ditampilkan teknik-teknik optimasi yang diterapkan dalam merancang filter pita ultra lebar (UWB) lintas pita garis mikro. Di sini dibahas optimasi yang didasarkan pada berbagai teknik struktur dasar cacat, rancangan resonator, dan tipe bahan dielektrik. Filter-filter lintas pita garis mikro yang diimplementasikan pada pita-pita frekuensi UWB yang digunakan di dalam sistem komunikasi tanpa kabel memiliki fitur-fitur kunci untuk mengendalikan respons frekuensi di dalam pita lintasan dan pita penghentian. Teknik optimasi dikaji untuk mencapai kinerja yang optimum bagi filter garis mikro lintas pita untuk menjamin kerugian penyisipan minimum, selektivitas tinggi, kekompakkan, transisi yang tajam pada frekuensi penggalan, pengembalian modal tinggi (high return loss), dan linieritas yang sangat baik. Kajian yang panjang lebar menunjukkan bahwa pemilihan teknik pabrikasi yang benar dan tipe bahan mengoptimalkan kinerja rancangan filter garis mikro, sehingga meningkatkan kemampuan dipraktekkan untuk menampilkan sistem-sistem komunikasi tanpa kabel.

References

  1. M. Alaydrus, Int. J. Elect Eng Inform 2/2 (2010) 71
  2. A.M. Abbosh, IEEE Trans Microw Theor Tech. 60/1 (2011) 31.
  3. I.H. Ala'a, M.H. Bataineh, I. Ahmad, A.S. Al Zoubi, F. Elmegri, Internet Technologies and Applications (ITA), 2017 p. 290.
  4. X.K. Bi, T. Cheng, P. Cheong, S.K. Ho, K.W. Tam, (2018). IEEE Trans Circuits Syst II Express Briefs 66/3 (2018) 317.
  5. P. Chakravor ty D. Mandal, Int. J Numer Model Electron. Netw Devices Fields 29/3 (2016) 520.
  6. A. Hennings, E. Semouchkina, A. Baker, G. Semouchkin, IEEE Trans. Microw. Theor. Tech. 54/3 (2006) 1253.
  7. C.L. Hsu, F.C. Hsu, J.K. Kuo, IEEE MTT-S International Microwave Symposium Digest, 2005, p. 4.
  8. J. Jeon, S. Kahng, H. Kim, J Electromagn Eng. Sci. 15/1 (2015) 31.
  9. M.T. Khan, M.A. Zakariya, M.N.M. Saad, Z. Baharudin, M.U. Rehman, 5th International Conference on Intelligent and Advanced Systems (iCIAS), 2014 p. 1.
  10. A. Ku mar, K.V. Machavaram, Int J Microw. Wirel. Technol. 5/5 (2013) 589
  11. M.I. Lai, S.K. Jeng, IEEE Trans. Microw. Theor. Tech. 54/1 (2006) 160.
  12. Y.S. Mezaal, H.T. Eyyuboğlu, J.K. Ali, IETE J Res 60/3 (2014) 257.
  13. Y.S. Mezaal, H.T. Eyyuboglu, PloS One 11/4(2016) e0152615.
  14. S. Parvez, N. Sakib, M.N. Mollah, International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2015, p. 1.
  15. Y. Song, G.M. Yang, W. Geyi, IEEE Microw. Wirel. Compon Lett 24/4 (2014) 230.
  16. L. Wang, G. Wang, Y. He, R. Zhang, IEEE MTT-S International Microwave Symposium (IMS) 2017, p. 1620
  17. Y.C. Yun, S.H. Oh, J.H. Lee, K. Choi, T.K. Chung, H.S. Kim, IEEE Trans Magn 52/3 (2015) 1.
  18. X. Zhang, Q. Zhai, Z. Li, W. Ou, Y. Ou, J Electromagn Waves Appl 32/17 (2018) 2281.
  19. D.D. Zhang, L. Zhou, L.S. Wu, L.F. Qiu, W.Y. Yin, J.F. Mao, IEEE Trans Microw . Theor Tech 62/5 (2014) 1173.
  20. J. Fan, D. Zhan, C. Jin, J. Luo, IEEE Microw Wirel Compon Lett 22/7 (2012) 348.
  21. M.F. Hasan, A.S.A. Jalal, E.S. Ahmed, Progress in Electromagnetics Research Symposium-Spring (PIERS), 2017 p. 1810.
  22. Y.S. Mezaal, A.S. Al Zayed, Int J Electron 106/3 (2019) 477.
  23. B. Sahu, S. Singh, M.K. Meshram, S.P. Singh, Int. J RF Microw Comput Aided Eng 28/4 (2018) e21209.
  24. B. Sahu, S. Singh, M.K. Meshram, S.P. Singh, J. Electromagn Waves Appl 32(5) (2018) 635.
  25. J. Zhao, J. Wang, G. Zhang, J.L. Li, IEEE Microw. Wirel. Compon. Lett. 23/12 (2013) 638.
  26. A. Boutejdar, N.M. Eltabit, A.A. Ibrahim, E.P. Burte, M.A. Abdalla, Appl Comput Electromagn Soc. J. 31/2 (2016) 132
  27. P. Singh, R. Tomar, Procedia Technol 17 (2014) 58
  28. J.K. Lee, Y.S. Kim, IEEE Microw Wirel Compon. Lett 20 6 (2010) 316.
  29. J. Lu, H. Gu, W. Wu, IEEE International Conference on Microwave and Millimeter Wave. Technology (ICMMT) 2016, p. 401.
  30. S. Xu, K. Ma, F. Meng, K.S. Yeo, IEEE Microw.. Wirel. Compon. Lett. 25/4 (2015) 217.
  31. A. Zhan, Y. Hu, M. Yu, J Coast Res 83/sp1 (2018) 585.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.