•  
  •  
 

Abstract

In this study, we synthesized epoxidised monoethanolamide (EMA) from Bauhinia monandra seed oil (BMO) via a simple reaction route. In this process, BMO was transesterified to obtain a mixture of methyl esters, which was subjected to a urea adduct complexation reaction. The unsaturated methyl esters (BME) from the urea adduct complexation reaction were then epoxidised using performic acid produced in situ in a one-pot reaction system. The epoxidised methyl esters were converted to EMA by reacting them with monoethanolamine (1:10). The progression of the reaction was monitored using Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy, and the fatty acid composition was determined by gas chromatography. The results indicate that the most abundant fatty acid in BMO is C18:1 (25.70% ± 0.20%), with a degree of unsaturation of 49.00% ± 0.50%. After the urea adduct complexation reaction, the degree of unsaturation increased to 95.20% ± 0.10% with C18:2 (75.00% ± 0.10%) becoming the most dominant fatty acid. The oxirane oxygen content was found to be 5.50% ± 0.50%. The results of this study suggest that the urea adduct complexation reaction offers a potential means for increasing the unsaturation of fatty methyl esters. In addition, our findings show that EMA can be produced at low or room temperature.

Bahasa Abstract

Sintesis Epoxy Monoethanolamide dari Minyak Biji Bauhinia monandra. Dalam studi ini, kami mensintesis epoxidised monoethanolamide (EMA) dari minyak biji Bauhinia monandra (BMO) melalui rute reaksi yang sederhana. Dalam proses ini, BMO ditransesterifikasi untuk menghasilkan campuran metil ester, yang selanjutnya digunakan untuk reaksi kompleksasi urea. Metil ester tak jenuh (BME) hasil dari reaksi kompleksasi urea kemudian di epoksidasi menggunakan asam performat yang diproduksi secara in situ dalam sistem reaksi one-pot. Metil ester terepoksidasi kemudian dikonversi menjadi EMA dengan menggunakan monoetanolamina (1:10). Fourier Transform Infrared (FTIR) dan Proton Nuclear Magnetic Resonance (NMR) digunakan untuk memonitor reaksi, sedangkan kromatografi gas (GC) digunakan untuk menentukan komposisi dari asam lemak. Hasil penelitian menunjukkan bahwa asam lemak yang paling banyak terdapat dalam BMO adalah C18: 1 (25,70% ± 0,20%), dengan tingkat ketidakjenuhan 49,00% ± 0,50%. Setelah reaksi kompleksasi urea, tingkat ketidakjenuhan meningkat menjadi 95,20% ± 0,10% dengan C18: 2 (75,00% ± 0,10%) menjadi asam lemak yang paling dominan. Kandungan oxirane oxygen yang dihasilkan sebesar 5,50% ± 0,50%. Hasil penelitian ini menunjukkan bahwa reaksi kompleksasi urea merupakan cara yang potensial untuk meningkatkan ketidakjenuhan dari metal ester. Selain itu, hasil dari penelitian ini menunjukkan bahwa EMA dapat disintesis pada suhu rendah atau suhu kamar.

References

  1. G.C. Gervasio, Fatty acids and derivatives from Coconut Oil, in Bailey’s Industrial Oil and Fat Products, 5th ed., vol 5, edited by Y.H. Hui, Wiley Interscience, NY, 1996, p. 33.
  2. U. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schfer, Angew. Chem. Int. Ed. 50 (2011) 3854.
  3. M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th ed. John Wiley & Sons, Hoboken, New Jersey, 2012.
  4. A. Adewuyi, A. Göpfert, T. Wolff, Ind. Crops Prod. 52 (2014) 439.
  5. R. Azarmi, A. Ashjaran, J. Chem. Pharm. Res. 7 (2015) 632.
  6. H. Kolanciliar, Ibid. 81 (2004) 597.
  7. H.S. Rho, H.S. Baek, D.H. Kim, I.S. Chang, Bull. Korean Chem. Soc. 27 (2006) 584.
  8. A.Y. Mudiyanselage, H. Yao, S. Viamajala, S. Varanasi, K. Yamamoto, Ind. Eng. Chem. Res. 54 (2015) 4060.
  9. M.T. Renita Manurung, A.S. Rakhmat, T.S. Rahmad, IJIRSET. 2 (2013) 4205.
  10. R. Marchant, I.M. Banat, Biotechnol. Lett. 34 (2012) 1597.
  11. I.M. Banat, S.K. Satpute, S.S. Cameotra, R. Patil, N.V. Nyayanit, Front Microbiol. 5 (2014) 697.
  12. K.H. Badri, Z. Othaman, S.H. Ahmad, J. Mat. Sci. 39 (2004) 5541.
  13. A. Adewuyi, R.A. Oderinde, Int. J. Food Prop. 16 (2013) 634.
  14. A.B. Fadhil, M.M. Dheyab, A.Y. Abdul-Qader, J. Assoc. Arab Univ. Basic Appl. Sci. 11 (2012) 45.
  15. W.W. Christie, Lipid analysis, 2nd edn. Pergamoon press, Oxford, 1982, p.90.
  16. A. Adewuyi, R.A. Oderinde, B.V.S.K. Rao, R.B.N. Prasad, M. Nalla, Chem. Cent. J. 5 (2011) 79.
  17. AOAC, Official method of analysis of AOAC International, 14th ed, vol.67 Arlington, Virginia, USA, 1984, p.503.
  18. AOCS, Official Methods of Analysis, Cd 9-57, American Oil Chemists’ Society, 1997.
  19. A. Adewuyi, R.A. Oderinde, La Riv. Ita. Delle Sos. Grasse. LXXXVIII (2011) 89.
  20. E. Reyes-Dorantes, J. Zuñiga-Díaz, A. QuintoHernandez, J. Porcayo-Calderon, J.G. GonzalezRodriguez, L. Martinez-Gomez, J. Chem. 2017 (2017) 1.
  21. B.M. Folmer, K. Holmberg, E.G. Klingskog, K. Bergstrom, J. Surfact. Deterg. 4 (2001) 175.
  22. T. Tremblay, C. St-Georges, M.A. Legault, C. Morin, S. Fortin, E. Marsault, Bioorg. Med. Chem. Let. 24 (2014) 5635.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.