•  
  •  
 

Abstract

This study investigated the influence of plasticizers (polyethylene glycol [PEG] and ethylene carbonate [EC]) on the ionic conduction of CMC-PVA-NH4NO3. Blended biopolymer electrolytes (BBEs) based on carboxymethyl cellulose–polyvinyl alcohol (CMC-PVA) doped with ammonium nitrate (NH4NO3) were obtained via casting solution technique incorporated with PEG and EC, which acted as plasticizers. Electrical impedance spectroscopy (EIS) was conducted to evaluate the effect of plasticization on the ionic conduction properties. The ionic conductivity improved from 1.70 × 10−3 S/cm for un-plasticized BBEs to 3.92 × 10−3 S/cm for plasticized BBEs with EC and 3.00 × 10−3 S/cm for plasticized BBEs with PEG. The improvement indicated that the plasticizers weakened the Coulombic force and promoted further dissociation in the ionic dopant. The highest ionic conductivity was achieved for BBEs plasticized with EC, thereby suggesting the suitability of EC as plasticizer in this present system. The BBE system showed the Arrhenius characteristic at elevated temperatures and demonstrated increasing ionic conductivity. Dielectric properties of all BBE systems were found to improve upon the addition of EC and PEG, demonstrating their correlation with ionic conductivity.

Bahasa Abstract

Etilen Karbonat dan Polyethylene Glycol (PEG) sebagai Pemlastis yang Efisien dalam Polymer Electrolyte Berbasis CMC-PVA-NH4NO3. Kajian ini berkenaan dengan penyiasatan pengaruh campuran plastik (polietilena glikol [PEG] and etilena karbonat [EC]) pada kekonduksian ion di dalam CMC-PVA-NH4NO3. Elektrolit biopolimer campuran yang diadaptasi berdasarkan kandungan karboksimetil selulosa-polivinil alkohol (CMC-PVA) yang didopkan dengan ammonium nitrat (NH4NO3) dihasilkan melalui teknik tebaran larutan yang mengandungi PEG dan EC. Spektroskopi impedan elektrik (EIS) digunakan untuk menilai kesan campuran plastik kepada sifat pengaliran ionik. Kekonduksian ionik telah meningkat kepada 1.70 x 10-3 S/cm untuk campuran plastik EC dan 3.00 x 10-3 S/cm untuk campuran plastik PEG. Penambahbaikan itu sepadan dengan keupayaan campuran plastik untuk melemahkan daya Kulumbik dan meningkatkan penceraian selanjutnya dalam ionik dopan. Kekonduksian ionik tertinggi dicapai untuk BBEs yang mengandungi EC dan menunjukkan kesesuaian EC sebagai campuran plastik dalam sistem ini. Sistem BBEs menunjukkan ciri-ciri Arrhenius pada suhu tinggi dan menunjukkan peningkatan kekonduksian ion. Sifat-sifat dielektrik untuk semua sistem BBEs didapati bertambah baik apabila penambahan EC dan PEG dan menunjukkan perkaitan antara hubungan mereka dengan corak kekonduksian.

References

  1. N. A. Ramlee,Y. Tominaga, Polymer Degradation and Stability 163/(2019) 35.
  2. S. B. Aziz, M. H. Hamsan, M. A. Brza, M. F. Z. Kadir, R. T. Abdulwahid, H. O. Ghareeb, H. J. Woo, Results in Physics 15/(2019) 102584.
  3. M. Shukur,M. Kadir, Electrochimica Acta 158/(2015) 152.
  4. R. A. Senthil, J. Theerthagiri, J. Madhavan, Journal of Physics and Chemistry of Solids 89/(2016) 78.
  5. N. M. J. Rasali, S. K. Muzakir, A. S. Samsudin, Makara Journal Of Technology 21/2 (2017) 65.
  6. P. Perumal, P. Christopher Selvin, S. Selvasekarapandian, P. Sivaraj, K. P. Abhilash, V. Moniha, R. Manjula Devi, Polymer Degradation and Stability 159/(2019) 43.
  7. R. V. Patil, D. Praveen, R. Damle, AIP Conference Proceedings, 2018, 090080.
  8. A. Samsudin,M. Saadiah, Journal of Non-Crystalline Solids 497/(2018) 19.
  9. M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, M. M. Beppu, European Polymer Journal 47/3 (2011) 254.
  10. C. Medina Jaramillo, T. J. Gutiérrez, S. Goyanes, C. Bernal, L. Famá, Carbohydrate Polymers 151/(2016) 150.
  11. M. P. Rosenwinkel,M. Schönhoff, Journal of The Electrochemical Society 166/10 (2019) A1977.
  12. M. Saadiah,A. Samsudin, AIP Conference Proceedings, 2018, 020223.
  13. M. A. Saadiah, D. Zhang, Y. Nagao, S. K. Muzakir, A. S. Samsudin, Journal of Non-Crystalline Solids 511/(2019) 201.
  14. M. A. Saadiah,A. S. Samsudin, IOP Conference Series: Materials Science and Engineering 342/1 (2018) 012045.
  15. A. Mohamad,A. Arof, Materials Letters 61/14-15 (2007) 3096.
  16. M. Isa,A. Samsudin, International Journal of Polymer Analysis and Characterization 22/5 (2017) 447.
  17. D. Dragunski,A. Pawlicka, Molecular Crystals and Liquid Crystals 374/1 (2002) 561.
  18. M. Kadir, S. Majid, A. Arof, Electrochimica Acta 55/4 (2010) 1475.
  19. R. Shioiri, H. Kokubo, T. Horii, Y. Kobayashi, K. Hashimoto, K. Ueno, M. Watanabe, Electrochimica Acta 298/(2019) 866.
  20. M. N. Chai,M. I. N. Isa, Advanced Materials Research 1107/(2015) 242.
  21. M. Ravi, S. Song, K. Gu, J. Tang, Z. Zhang, Materials Science and Engineering: B 195/(2015) 74.
  22. S. Das,A. Ghosh, Electrochimica Acta 171/(2015) 59.
  23. N. N. Ramly, N. A. Aini, N. Sahli, S. F. Aminuddin, M. Z. A. Yahya, A. M. M. Ali, International Journal of Hydrogen Energy 42/14 (2017) 9284.
  24. R. Sengwa, S. Choudhary, P. Dhatarwal, Ionics 21/1 (2015) 95.
  25. T. Dam, N. Karan, R. Thomas, D. K. Pradhan, R. Katiyar, Ionics 21/2 (2015) 401.
  26. D. K. Pradhan, N. Karan, R. Thomas, R. Katiyar, Materials Chemistry and Physics 147/3 (2014) 1016.
  27. M. Tsuboi, M. Hibino, N. Mizuno, S. Uchida, Journal of Solid State Chemistry 234/(2016) 9.
  28. S. R. Majid,A. K. Arof, Physica B: Condensed Matter 390/1-2 (2007) 209.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.