•  
  •  
 

Abstract

Dextran polymer host was doped with different concentrations of ammonium fluoride (NH4F) via casting technique. In this present work, dextran-NH4F film has been employed to investigate the ionic conductivity using electrochemical impedance spectroscopy from 50 to 5 MHz. The highest room temperature conductivity is achieved at (2.33 ± 0.76) × 10-3 S cm-1 with 40 wt.% NH4F. The electrolyte is found to obey Arrhenius rule at high temperature with activation energy of 0.21 eV. Dielectric analysis has been performed to obtain better understanding on the conductivity pattern. The dielectric parameters e.g. ɛreal, ɛimag, Mreal, and Mimag have been tested as a function of frequency at various temperature. The potential stability obtained for the highest electrolyte in this study is 1.58 V.

Bahasa Abstract

Pengaruh NH4F di dalam Elektrolit Biopolimer Berbasis Dextran: Kajian Kekonduksian dan Kelistrikan. Polimer dextran yang didoping dengan kepekatan amonium florida yang berbeza melalui penuangan larutan. Dalam kerja ini, dextran-NH4F telah digunakan untuk menginvestigasi kekonduksian ionik melalui spektroskopi impedansi listrik. Kekonduksian tertinggi di suhu bilik yang diperoleh adalah (2.33 ± 0.76) × 10-3 S cm-1 dengan 40% berat NH4F. Elektrolit didapati mengikut peraturan Arrhenius pada suhu tinggi dengan tenang pengaktifan 0.21 eV. Analisis dielektrik telah dilaksanakan bagi memperoleh pemahaman tentang corak kekonduksian. Ciri-ciri dielektrik seperti ɛreal, ɛimag, Mreal, dan Mimag telah diuji dengan pelbagai frekuensi dan suhu. Kestabilan pontensi yang diperoleh untuk elekrolit yang mempunyai kekonduksian tertinggi adalah 1.58 V.

References

  1. M.N. Chai, M.I.N. Isa, Sci. Rep. 6 (2016) 1.
  2. M.F. Shukur, M F.R. Ithnin, M.F.Z. Kadir, Ionics. 7 (2014) 977.
  3. M.H. Hamsan, M.F. Shukur, M.F.Z. Kadir, Ionics. 23 (2017) 1137.
  4. D. Maria, A. Madalina, V. Marian, V. Catalin, M. Viorica, Solid State Phenom. 188 (2012) 10.
  5. G. Telegeev, N. Kutsevol, V. Chumachenko, A. Naumenko, P. Telegeeva, S. Filipchenko, Y. Harahuts, Int. J. Polym. Sci. 20 (2017) 1.
  6. S. Sikkanthar, S. Karthikeyann, S. Selvasekarapandian, D.V. Pandi, S. Nithya, C.J. Sanjeeviraja, Solid State Electrochem. 4 (2014) 987.
  7. O.G. Abdullah, S.B. Aziz, M. Rasheed, Ionics. 24 (2018) 777.
  8. N.H. Ahmad, M.I.N. Isa, Adv. Mat. Res. 1107 (2015) 247.
  9. R. Hemalatha, M. Alagar, S. Selvasekarapandian, B. Sundaresan, V. Moniha, J. Sci. Adv. Mat. Dev. 4 (2019) 101.
  10. M.F.Z. Kadir, N.S. Salleh, M.H. Hamsan, Z. Aspanut, M.F. Shukur, Ionics. 24 (2018)1651.
  11. M.N. Chai, M.I.N. Isa, Sci. Rep. 6 (2016) 27328.
  12. V. Kumaran, H.M. Ng, S. Ramesh, K. Ramesh, B. Vengadaesvaran, A. Numan, Ionics. 24 (2018) 1947.
  13. Y.M. Yusof, M.F. Shukur, H.A. Illias, M.F.Z. Kadir, Phys. Scr. 89 (2014) 035701.
  14. S. Das, A. Ghosh, AIP Adv. 5 (2015) 1.
  15. A. Chandra, Indian J. Pure Appl. Phys. 51 (2013) 788.
  16. N.A. Aziz, S.R. Majid, A.K. Arof, J. Non-Cryst. Solids 58 (2012) 58.
  17. M.F. Shukur, F.M. Ibrahim, N.A. Majid, R. Ithnin, M.F.Z. Kadir, Phys. Scripta. 88 (2013) 025601.
  18. J. Gurusiddappa, W. Madhuri, R.P. Suvarna, K.P. Dasan, Indian J. Adv. Chem. Sci. 4 (2016) 14.
  19. A.Abdullah, S.Z. Abdullah, A.M.M. Ali, T. Winie, M.Z.A. Yahya, R.H.Y. Subban, Mater. Res. Innov. 13 (2005) 255.
  20. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Express Polym. Lett. 4 (2010) 300.
  21. T. Kobayashi, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 86 (2005) 01290.
  22. M.Z. Iqbal, S.R. Rafiuddin, J. Adv. Res. 7 (2016) 135.
  23. K. Mishra, S.A. Hashmi, D.K. Rai, High Perform. Polym. 26 (2014) 672.
  24. R. Pratap, B. Singh, S. Chandra, J. Power Sources. 161 (2006) 702.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.