•  
  •  
 

Abstract

The field of physical metallurgy is one of the primary beacons that guide alloy developments for multipurpose materials such as the in-core structure materials for pressure vessel components and heat exchangers. The surface microstructure of new ferritic steel with significant local constituent materials was characterized by high resolution powder neutron diffractometer (HRPD) and transmission electron microscope (TEM), combined with the energy dispersive X-ray spectroscopy (EDX). The alloy contains73% Fe, 24% Cr, 2% Si, 0.8% Mn, and 0.1% Ni, in %wt. The charge materials were melted by the casting techniques. The neutron diffractograms obtained shows five dominant diffraction peaks at (110), (200), (211), and (220) reflection planes, which is a typical structure for a body centered tetragonal system. The pattern also included some unidentified peaks which were verified to be Al2O3.54SiO2, Cr23C6, and SiC crystals. A piece of alloy which taken from the middle of the ferritic ingots was also characterized by the HRPD; no unidentified peaks were observed. Results from the scanning transmission electron microscopy (STEM) combined with EDX analyses confirmed the neutron identified phase distributions. Also, oxides and carbides were observed to form mainly close to the surface of the steel. Cracks and pores which probably formed during the preparations were also identified close to the surface. Although the ferritic steel was successfully synthesized and characterized, some unidentified phases and defects could still be found in the produced ingots.

Bahasa Abstract

Inspeksi Komprehensif pada Baja Feritik Eksperimental dengan Mikroskop Elektron Transmisi dan Teknik Difraksi Neutron. Bidang metalurgi fisik adalah salah satu suar primer yang memandu pengembangan paduan pada material serba guna, yaitu material struktur inti untuk komponen bejana tekan dan penukar panas. Struktur mikro permukaan baja feritik baru dengan kandungan lokal yang signifikan telah dikarakterisasi secara komprehensif dengan menggunakan difraktometer neutron serbuk resolusi tinggi (HRPD) dan mikroskop elektron transmisi (TEM) yang dikombinasikan dengan spektroskopi dispersif energi sinar-X (EDX). Paduan mengandung 73% Fe24% Cr2% Si0.8% Mn0.1% Ni dalam% wt. dicairkan dengan teknik casting. Difraksi neutron menampilkan lima puncak difraksi dominan pada bidang refleksi (110), (200), (211) dan (220), yang merupakan struktur tipikal untuk sistem tetragonal berpusat badan (bct). Pola difraksi menampilkan juga beberapa puncak yang tidak diharapkan; terdiri dari kristal: Al2O3.54SiO2, Cr23C6 dan SiC. Sementara sampel paduan yang diambil di tengah bahan ingot feritik juga difraksi neutron dan tidak menampakkan puncak yang tidak diharapkan. Hasil lebih lanjut dari pemindaian mikroskop elektron transmisi (STEM) yang dikombinasikan dengan analisis EDX mengkonfirmasi distribusi fase yang teridentifikasi pada difraksi neutron. Selain itu, oksida dan karbida yang terbentuk dekat dengan permukaan bersama dengan retakan dan pori-pori, mungkin terbentuk selama proses preparasi. Meskipun, baja feritik telah berhasil disintesis, beberapa fase dan cacat yang tidak teridentifikasi masih dapat ditemukan dalam ingot yang diproduksi.

References

  1. NEA-OECD, Status Report on Structural Materials for Advanced Nuclear Systems, Nuclear Energy Agency Organisation for Economic Co-operation and Development, OECD, NEA No.6409, 2013.
  2. E. Taban, E. Kaluc, T. Atici et al., 9–12% Cr Steels: Properties and Weldability Aspects, The Situation in Turkish Industry, Proc. 2nd Int. Conf. on Welding Tech. and Exhibition, 2012, p. 203.
  3. N. Effendi, T. Darwinto, A.H. Ismoyo, Parikin, Indonesian J. Mat. Sci. 15/4 (2014) 187.
  4. Parikin, B. Sugeng, M. Dani, S.G. Sukaryo, Indonesian J. of Mat. Sci. 18/4 (2017) 179.
  5. A.H. Ismoyo, Parikin, Mechanical Testing on the 73Fe24Cr2Si0.8Mn0.1Ni Ferritic Steel for Structural Materials, submitted to Indonesian J. Mat. Sci., 2018.
  6. P.J.G. Nieto, V.M.G. Suárez, J.C.A. Antón et al., Mater. 8 (2015) 3562.
  7. J.P. Zou, K. Shimizu, Q.Z. Cai, J. Iron Steel Res. Int. 22/11 (2015) 1049.
  8. S. Wagner, M. Sathe, O. Schenk, Int. J. Adv. Man. Tech. 71/5–8 (2014) 973.
  9. T.M. Holden, Y. Traore, J. James, J. Kelleher, P.J. Bouchard, J. Appl. Cryst. 48/2 (2015) 582.
  10. V.M. Gundyrev, V.I. Zel’dovich, Phys. Met. Metallogr. 115/10 (2014) 973.
  11. Parikin, A.H. Ismoyo, A. Dimyati, Makara J. Tech. 21/2 (2017) 49.
  12. V. Kumar, S. Kumari, P. Kumar, M. Kar, L. Kumar, Adv. Mater. Lett. 6/2 (2015) 139.
  13. B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127 (2017) 471.
  14. O. Rivin, A. Broide, S. Maskova et al., Hyperfine Interact. 231 (2015) 29.
  15. A.A. Saleh, D.W. Brown. E.V. Pereloma, B. Clausen, C.H.J. Davies, C.N. Tomé et al., Appl. Phys. Lett. 106/17 (2015) 1911.
  16. J.B. Wiskel, L. Junfang, O. Omotoso, D.G. Ivey, Metals 6/4 (2016) 90.
  17. M. Frentrup, L.Y. Lee, S.L. Sahonta, M.J. Kappers, F. Massabuau, P. Gupta et al., J. Phys. D: Appl. Phys. 50 (2017) 1.
  18. I. Bruno, S. Gražulis, J.R. Helliwell, S.N. Kabekkodu, B. McMahon, J. Westbrook, Data Sci. J. 16 (2017) 38.
  19. Parikin, M. Dani, A.K. Jahja, R. Iskandar, J. Mayer, Int. J. Tech. 9/1 (2018) 78.
  20. M. Dani, Parikin, R. Iskandar, A. Dimyati, Indones. J. Sci. Mat. 18/4 (2017) 173.
  21. M. Dani, Parikin, A. Dimyati, A.K. Rivai, R. Iskandar, Int. J. Tech. 9/1 (2018) 89.
  22. M. Dani, A. Dimyati, Parikin, F. Rohman, R. Iskandar, A.K. Jahja et al., Malay. J. Fund. Appl. Sci. 15/6 (2019) 831.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.