•  
  •  
 

Abstract

Adsorption processes are widely used for the removal of heavy metals from waste streams. Oil palm decanter cake (OPDC) is used as a bioadsorbent because of its compositional properties for activated carbon production; moreover, it is a readily available raw material produced in palm oil mills and is thus abundant and cheap. In this study, the OPDC was carbonized at 700 °C and activated using steam at 700 °C to produce oil palm decanter cake activated carbon (AC-OPDC). Batch adsorption experiments were carried out to compare the adsorption capacities of the raw OPDC and the AC-OPDC for heavy metals removal. The maximum adsorption capacities of AC-OPDC on Cu(II), Pb(II), and Zn(II) were found to be 45.01, 128.51, and 39.21 mg/g, respectively, which were higher than those of the raw OPDC. This study demonstrates that the AC-OPDC has the potential to be a bioadsorbent for heavy metal removal from wastewater.

Bahasa Abstract

Adsorpsi Ion Logam Berat menggunakan Oil Palm Decanter Cake Activated Carbon. Proses adsorpsi banyak digunakan untuk menghilangkan logam berat dari aliran limbah. Oil palm decanter cake (OPDC) digunakan sebagai bioadsorben karena sifat komposisinya untuk produksi karbon aktif; selain itu, OPDC merupakan bahan baku yang ter-sedia berlimpah dan murah pada pabrik minyak kelapa sawit. Dalam studi ini, OPDC dikarbonisasi pada suhu 700 °C dan diaktivasi menggunakan uap pada suhu 700 °C untuk memproduksi oil palm decanter cake activated carbon (AC-OPDC). Beberapa eksperimen adsorpsi telah dilakukan untuk membandingkan kapasitas adsorpsi atas bahan mentah OPDC dan AC-OPDC untuk menghilangkan logam berat. Kapasitas adsorpsi maksimum dari AC-OPDC pada Cu(II), Pb(II) dan Zn(II) adalah 45,01 mg/g, 128,51 mg/g dan 39,21 mg/g. Kapasitas tersebut lebih tinggi dibanding kapasitas adsorpsi atas bahan mentah OPDC. Studi ini mendemonstrasikan bahwa AC-OPDC mempunyai potensial untuk menja-di bioadsorben untuk menghilangkan logam berat dari limbah air.

References

  1. X. Jin, Z. Xiang, Q. Liu, Y. Chen, F. Lu, Bioresour. Technol. 244 (2017) 844.
  2. S.A. Kadhum, M. Y. Ishak, S. Z. Zulki, R. Hashim, Mar. Pollut. Bull. 101 (2015) 391.
  3. B. Houari, S. Louhibi, K. Tizaoui, L. Bouklihacene, B. Benguella, T. Roisnel, V. Dorcet, Arab. J. Chem., 2016, In Press.
  4. Sessarego, S.C.G. Rodrigues, Y. Xiao, Q. Lu, J. M. Hill, Carbohydr. Polym. 211 (2019) 249.
  5. F. Fu, Q. Wang, J. Environ. Manage. 92 (2011) 407.
  6. S. Guo, P. Jiao, Z. Dan, N. Duan, J. Zhang, G. Chen, W. Gao, Chem. Eng. Res. Des. 126 (2017) 217.
  7. Z Nahrul Hayawin, A.A. Astimar, J. Idris, J Norfaizah, M Ropandi, M.F. Ibrahim, M.A. Hassan, S. Abd-Aziz, J. Clean. Prod. 182 (2018) 830.
  8. H. Guo, C. Bi, C. Zeng, W. Ma, L. Yan, K. Li, K. Wei, J. Mol. Liq. 249 (2018) 629.
  9. Mullerova, E. Baldikova, J. Prochazkova, K. Pospiskova, I. Safarik, Mater. Chem. Phys. 225 (2019) 174.
  10. S. Kanchanasuta, N. Pisutpaisal, Int. J. Hydrogen Ener. 41 (2016) 15661.
  11. MPOB, Malaysian Oil Palm Statistics 2017, 37th ed., MPOB, Bangi, 2018.
  12. A. Kushairi, S.K. Loh, I. Azman, E. Hishamuddin, M. Ong-Abdullah, Z.B.M.N. Izuddin, G. Razmah, S. Sundram, G.K.A. Parveez, J. Oil Palm Res. 30 (2018) 163.
  13. S. Kanchanasuta, N. Pisutpaisal, Int. J. Hydrogen Energy, 41 (2016) 15661.
  14. G. P. Maniam, N. Hindryawati, I. Nurfitri, R. Jose, M. H. A. Rahim, F. A. Dahalan, M. M. Yusoff, Ener. Conv. Manage. 76 (2013) 527.
  15. Z. Nahrul Hayawin, A. Abdul Aziz, M.F. Ibrahim, J. Idris, M.A. Hassan, E.K. Bahrin, N.F. Jalani, N.S.A. Wafti, S. Abd-Aziz, J. Oil Palm Res. 30 (2018) 495.
  16. H.K. Georing, P.J. Van Soest, Forage Fiber Analyses (Apparatus, Reagents, Procedures, and some Applications), in: U.S. Agric. Res. Serv., U.S. Agricultural Research Service, the University of Virginia, 1970, p. 20.
  17. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Bioresour. Technol. 96 (2005) 1518.
  18. C. Kin Wai, S. Yusup, N. Zaheera Abdul Kapor, C. Chok, Chem. Eng. Transaction, 45 (2015) 1543.
  19. S. Kanchanasuta, O. Sillaparassamee Int. J. Hydrogen Energy, 42 (2017) 3440.
  20. A. Yahya, C.P. Sye, T.A. Ishola, H. Suryanto, Bioresour. Technol. 101 (2010) 8736.
  21. N.A. Rashidi, S. Yusup, M.M. Ahmad, N.M. Mohamed, B.H. Hameed, APCBEE Procedia, 3 (2012) 84.
  22. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Fuel, 86 (2007) 1781.
  23. K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Bioresour. Technol. 101 (2010) 6163.
  24. J. Pallarés, A. González-Cencerrado, I. Arauzo, Biomass Bioenergy. 115 (2018) 64.
  25. C. Saka, J. Anal. Appl. Pyrolysis, 95 (2012) 21.
  26. N. Sahad, A.M. Som, A.S. Baharuddin, N. Mokhtar, Z. Busu, A. Sulaiman, BioResources, 9 (2014) 6361.
  27. N.I.A.A. Nordin, H. Ariffin, Y. Andou, M.A. Hassan, Y. Shirai, H. Nishida, W.M.Z.W. Yunus, S. Karuppuchamy, N.A. Ibrahim, 18 (2013) 9132.
  28. E.K. Bahrin, A.S. Baharuddin, M.F. Ibrahim, M.N.A. Razak, A. Sulaiman, S. Abd-Aziz, M.A. Hassan, Y. Shirai, H. Nishida, BioResources, 7 (2012) 1784.
  29. K. Wang, J.X. Jiang, F. Xu, R.C. Sun, Polym. Degrad. Stab. 94 (2009) 1379.
  30. R.H. Hesas, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu, BioResources, 8 (2013) 2950.
  31. C. Bouchelta, M.S. Medjram, O. Bertrand, J.-P. Bellat, J. Anal. Appl. Pyrolysis, 82 (2008) 70.
  32. U. Garg, M.P. Kaur, G.K. Jawa, D. Sud, V.K. Garg, J. Hazard. Mater. 154 (2008) 1149.
  33. K. Periasamy, C. Namasivayam, Ind. Eng. Chem. Res. 33 (1994) 317.
  34. R. Wahi, Z. Ngaini, V.U. Jok, World Appl. Sci. J. 5 (2009) 84.
  35. M.M. Rao, D.K. Ramana, K. Seshaiah, M.C. Wang, S.W.C. Chien, J. Hazard. Mater. 166 (2009) 1006.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.