•  
  •  
 

Abstract

A photovoltaic (PV) mechanism consists of three important steps, i.e., (i) electron excitation upon absorption of photon with energy higher than the bandgap of fluorophore, (ii) excited-state electron injection from the fluorophore to the pho-toelectrode, and (iii) electron regeneration from the electrolyte to the fluorophore. An efficient electron regeneration could be achieved upon fulfillment of the requirements of energy alignment, i.e., lowest unoccupied molecular orbital of fluorophore (LUMOfluorophore) > redox potential of electrolyte > highest occupied molecular orbital of fluorophore (HOMOfluorophore). This study investigated the electron regeneration efficiency of excitonic solar cells fabricated using three polymer-based electrolytes, i.e., (i) 60% carboxymethyl cellulose (CMC) blended with 40% polyvinyl alcohol (PVA), (ii) alginate, and (iii) xanthan. The redox potentials of the electrolytes (Eo) were calculated using quantum chemical calculations under the framework of density functional theory. The compatibility of fluorophore and electro-lyte was analyzed in terms of the energy level alignment. The cells fabricated using the three polymer-based electrolytes were analyzed, with the CMC/PVA-based cell yielding the highest efficiency, η, of 1.39% under the illumination of the sun. The low η of the cells can be attributed to the incompatible Eo of the electrolytes, which exhibited a higher energy level than the LUMOfluorophore. The alginate- and xanthan-based cells exhibited inferior PV properties (i.e., open circuit voltage, short circuit current, fill factor, and η) to that of the CMC/PVA-based cell. This finding can be attributed to the increment of energy offset between Eo and HOMOfluorophore.

Bahasa Abstract

Sebuah Studi Tentang Efisiensi Regenerasi Elektron Sel Surya yang Dibuat Menggunakan CMC/PVA-, Alginat-, dan Elektrolit Berbasis Xanthan. Mekanisma fotovoltaik (PV) terdiri daripada tiga langkah penting iaitu (i) pengu-jaan elektron apabila penyerapan foton dengan tenaga yang lebih tinggi daripada jurang jalur fluorofora, (ii) suntikan elektron yang teruja dari fluorofora kepada fotoelektrod, dan (iii) pengenerasian semula elektron daripada elektrolit ke fluorofora. Pengenerasian semula elektron yang efisien dapat dicapai apabila memenuhi keperluan penjajaran tenaga iaitu, LUMOfluorofora > potensi redoks elektrolit > HOMOfluorofore. Kertas kerja ini membentangkan kajian kecekapan pengenerasian semula sel suria eksitonik yang dibentuk menggunakan tiga elektrolit berasaskan polimer iaitu, (i) 60% karboksimetil selulosa (CMC) yang dicampur dengan 40% alkohol polivinil (PVA), (ii) alginate dan (iii) xanthan. Po-tensi redoks elektrolit (Eo) dihitung menggunakan pengiraan kimia kuantum di bawah rangka density functional theory (DFT). Analisis fluorofora dan elektrolit adalah sesuai berdasarkan kepada penjajaran tahap tenaga. Setiap sel yang dibina dengan menggunakan tiga jenis elektrolit telah dianalisis; CMC/PVA menghasilkan kecekapan tertinggi, 1.39% di bawah pencahayaan yang bersamaan dengan satu Matahari. Nilai keberkesanan setiap sel adalah rendah kerana Eo elektrolit tidak bersesuaian kerana menunjukkan tahap tenaga yang lebih tinggi daripada LUMOfluorophora. Sel berasaskan alginate dan xanthan menunjukkan sifat photovoltaik yang lebih rendah (iaitu, voltan litar terbuka, arus litar pintas, faktor pengisi dan) daripada sel berasaskan CMC/PVA. Hipotesis daripada pemerhatian tersebut adalah kerana penamba-han tenaga di antara Eo dan HOMOfluorophora.

References

  1. D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, J. Nanomater. 2018 (2018) 1.
  2. N.A. Chuchvaga, D.V. Zhilina, S.R. Zhantuarov, S.Z. Tokmoldin, E.I. Terukov, J. Phys.: Conf. Ser. 993/1 (2018) 012039.
  3. A.A. Baloch, S.P. Aly, M.I. Hossain, F. ElMellouhi, N. Tabet, F.H. Alharbi, Scientific Reports. 7/1 (2017) 11984.
  4. S. Bernacchi, Y. Mély, Nucleic Acids Res. 13 (2000) 29.
  5. W. Feng, A.S. Wan, E. Garfunkel, J. Phys. Chem. C. 19 (2003) 117.
  6. W. Feng, S. Rangan, Y. Cao, E. Galoppini, R.A. Bartynski, E. Garfunkel, J. Mater. Chem. 19 (2014) 2.
  7. D.P. Hagberg, T. Marinado, K.M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, L. Sun, J. Org. Chem. 25 (2007) 72.
  8. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 8 (1999) 11.
  9. P. Gu, D. Yang, X. Zhu, H. Sun, P. Wangyang, J. Li, H. Tian, AIP Advances. 7/10 (2017) 105219.
  10. M. Uudsemaa, T. Tamm, J. Phys. Chem. A. 46 (2003) 107.
  11. L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 14 (2011) 13.
  12. L. Yan, Y. Lu, X. Li, Phys. Chem. Chem. Phys. 7 (2016) 18.
  13. Y.O. Iwaki, M.H. Escalona, Briones, A. Pawlicka, Mol. Cryst. Liq. Cryst. 554 (2012) 221.
  14. F.C. Tavares, D.S. Dörr, A. Pawlicka, C. Oropesa Avellaneda, J. App. Polym. Sci. 135 (2018) 46229.
  15. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, R.A. 1, Gaussian. Inc., Wallingford CT. 121 (2009) 150.
  16. M.H. Baik, R.A. Friesner, J. Phys. Chem. A. 32 (2002) 106.
  17. L.E. Roy, E. Jakubikova, M.G. Guthrie, E.R. Batista, J. Phys. Chem. A. 24 (2009) 113.
  18. S. Rajamani, T. Ghosh, S. Garde, J. Chem. Phys. 9 (2004) 120.
  19. M.T. McDonnell, D.A. Greeley, K.M. Kit, & D.J. Keffer. J. Phys. Chem. B. 34 (2016) 120.
  20. S.K. Muzakir, Malaysia University Conference Engineering Technology, 2014. p. 79.
  21. M.Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B. 16 (2002) 65.
  22. M. Liu, S.M. Han, X.W. Zheng, L.L. Han, T. Liu, Z.Y. Yu, Int. J. Electrochem. Sci. Belgrade. 10 (2015) 235.
  23. K. Arumugam, U. Becker, Miner. 4 (2014) 345.
  24. Z. Zhang, Y. Yu, P. Wang, ACS Appl. Mater. Interfaces. 4 (2002) 990. [25] S.K. Kim, P. Ho, J.W. Lee, S.Y. Jeon, S. Thogiti, R. Cheruku, J.H. Kim, Mol. Cryst. Liq. Cryst. 1 (2017) 653.
  25. P. Peljo, H.H. Girault, Energy Environ. Sci. 11 (2018) 2306.
  26. S. K. Muzakir, N. Alias, M.M. Yusoff, R. Jose, Phys. Chem. Chem. Phys. 15 (2013) 16275.
  27. J. N. D. Freitas, A. F. Nogueira, M. A. Paoli, J. Mater. Chem. 19 (2009) 5279.
  28. J. Y. Kim, T. H. Kim, D. Y. Kim, N.G. Park, K.D. Ahn, Power Sources 175 (2008) 692.
  29. L. Jin, Z. Wu, T. Wei, J. Zhai, X. Zhang, Chem. Commun. 47 (2011) 997. [31] Y. Wang, Sol. Energy Mater. Sol. Cells, 93 (2009) 1167.
  30. M.A. Saadiah, A.S. Samsudin, IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing. 342/1 (2018) 012045.
  31. H. Pujiarti, W.S. Arsyad, L. Muliani, R. Hidayat, J. Phys.: Conf. Ser. IOP Publishing. 1011/1 (2018) 012020.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.