•  
  •  
 

Abstract

Molybdenum dichalcogenides have been reviewed from the perspectives of bandgap, conductivity, and oxidation states of transition metal. Researchers have concluded that a narrow-bandgap transition metal dichalcogenide with high conductivity could be achieved for the high-performance electrode of a supercapacitor.

Bahasa Abstract

Logam Transisi Dikalkogenida untuk Elektroda Superkapasitor Kinerja Tinggi. Molibdenum dikalkogenida telah dikaji ulang dari perspektif keadaan-keadaan celah pita, konduktivitas, dan oksidasi logam transisi; yang menyimpulkan bahwa suatu logam transisi dikalkogenida celah pita sempit dengan konduktivitas tinggi dapat digunakan untuk elektroda superkapasitor kinerja tinggi.

References

  1. W. Zhang, H. Lin, H. Lu, D. Liu, J. Yin, Z. Lin, J. Mater. Chem. A. 3 (2015) 4399-4404.
  2. R.A. Aziz, S.K. Muzakir, I.I. Misnon, J. Ismail, R. Jose, J. Alloy. Compd. 673 (2016) 390-398.
  3. S. Zhang, N. Pan, Adv. Energy Mater. 5 (2015)
  4. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid. State Commun. 146 (2008) 351-355.
  5. J. Wang, R. Zhao, M. Yang, Z. Liu, Z. Liu, J. Chem. Phys. 138 (2013) 084701.
  6. Y. Cheng, U. Schwingenschlögl, MoS2: Materials, Physics and Devices, 1 ed., Springer International Publishing, Switzerland, 2014, p.291
  7. B. Chamlagain, Q. Li, N.J. Ghimire, H.-J. Chuang, M.M. Perera, H. Tu, Y. Xu, M. Pan, D. Xaio, J. Yan, D. Mandrus, Z. Zhou, ACS Nano. 8 (2014) 5079-5088.
  8. J. Li, N.V. Medhekar, V.B. Shenoy, J. Phys. Chem. C. 117 (2013) 15842-15848.
  9. M. Hosseini, M. Elahi, M. Pourfath, D. Esseni, Appl. Phys. Lett. 107 (2015) 253503.
  10. J.C. Shaw, H. Zhou, Y. Chen, N.O. Weiss, Y. Liu, Y. Huang, X. Duan, Nano Res. 7 (2015) 511-517.
  11. Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen, Nat. Nano. 9 (2014) 111-115.
  12. E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, J.E. Goldberger, ACS Nano. 7 (2013) 4414-4421.
  13. O.D. Restrepo, R. Mishra, J.E. Goldberger, W. Windl, J. Appl. Phys. 115 (2014) 033711.
  14. L.E. Smart, E.A. Moore, Solid State Chemistry: An Introduction, 3 ed., CRC Press Taylor & Francis Group, Singapore, 2005.
  15. K.W. Kim, M.G. Kanatzidis, Inorg. Chem. 30 (1991) 1966-1969.
  16. R.W.M. Wardle, S. Bhaduri, C.N. Chau, J.A. Ibers, Inorg. Chem. 27 (1988) 1747-1755.
  17. M. Pang, H.C. Zeng, Langmuir. 26 (2010) 5963-5970.
  18. M.I.B. Utama, Z. Peng, R. Chen, B. Peng, X. Xu, Y. Dong, L.M. Wong, S. Wang, H. Sun, Q. Xiong, Nano Lett. 11 (2011) 3051-3057.
  19. R. Xie, M. Zhou, Chem. Mater. 27 (2015) 3055-3064.
  20. A. Eichhöfer, O. Hampe, S. Lebedkin, F. Weigend, Inorg. Chem. 49 (2010) 7331-7339.
  21. T.P.A. Ruberu, H.R. Albright, B. Callis, B. Ward, J. Cisneros, H.-J. Fan, J. Vela, ACS Nano. 6 (2012) 5348-5359.
  22. A. Sahu, L. Qi, M.S. Kang, D. Deng, D.J. Norris, J. Am. Chem. Soc. 133 (2011) 6509-6512.
  23. A. Kornienko, L. Huebner, D. Freedman, T.J. Emge, J.G. Brennan, Inorg. Chem. 42 (2003) 8476-8480.
  24. T.G. Gray, C.M. Rudzinski, E.E. Meyer, R.H. Holm, D.G. Nocera, J. Am. Chem. Soc. 125 (2003) 4755-4770.
  25. C. Simonnet-Jégat, F. Sécheresse, Chem. Rev. 101 (2001) 2601-2612.
  26. M.M. Alyörük, Y. Aierken, D. Çakır, F.M. Peeters, C. Sevik, J. Phys. Chem. C. 119 (2015) 23231-23237.
  27. E.I. Stiefel, Transition Metal Sulfur Chemistry: Biological and Industrial Significance and Key Trends, Transition Metal Sulfur Chemistry, American Chemical Society, 1996, pp.2-38.
  28. M.V. Kovalenko, R.D. Schaller, D. Jarzab, M.A. Loi, D.V. Talapin, J. Am. Chem. Soc. 134 (2012) 2457-2460.
  29. X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Chem. Rev. 115 (2015) 11941-11966.
  30. D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu, J. Navarrete, M. Moskovits, K. Banerjee, Nano Lett. 15 (2015) 2852-2862.
  31. P.S.E. Yeo, M.-F. Ng, Chem. Mater. 27 (2015) 5878-5885.
  32. D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen, J.Y. Lee, Ind. Eng. Chem. Res. 53 (2014) 17901-17908.
  33. R.D. Nikam, A.-Y. Lu, P.A. Sonawane, U.R. Kumar, K. Yadav, L.-J. Li, Y.-T. Chen, ACS Appl. Mater. Interfaces. 7 (2015) 23328-23335.
  34. T.R. Cundari, P.D. Raby, J. Phys. Chem. A. 101 (1997) 5783-5788.
  35. R. Gautier, E. Furet, J.-F. Halet, Z. Lin, J.-Y. Saillard, Z. Xu, Inorg. Chem. 41 (2002) 796-804.
  36. W. Li, C.F.J. Walther, A. Kuc, T. Heine, J. Chem. Theory Comput. 9 (2013) 2950-2958.
  37. J. Lin, Y. Zhang, W. Zhou, S.T. Pantelides, ACS Nano. 10 (2016) 2782-2790.
  38. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7 (2014) 1597-1614.
  39. J.G. Stark, J. Chem. Educ. 46 (1969) 505.
  40. J.M. Luttinger, W. Kohn, Phys. Rev. 97 (1955) 869-883.
  41. J.C. Slater, Phys. Rev. 76 (1949) 1592-1601.
  42. G.H. Wannier, Phys. Rev. 52 (1937) 191-197.
  43. J. Singleton, Band Theory and Electronic Properties of Solids, Oxford University Press Inc., New York, 2008.
  44. K.-K. Kam, Physics, Iowa State University, Iowa, 1982.
  45. A. Ramadoss, T. Kim, G.-S. Kim, S.J. Kim, New J. Chem. 38 (2014) 2379-2385.
  46. K.-J. Huang, L. Wang, J.-Z. Zhang, L.-L. Wang, Y.-P. Mo, Energy. 67 (2014) 234-240.
  47. K.-J. Huang, L. Wang, Y.-J. Liu, H.-B. Wang, Y.-M. Liu, L.-L. Wang, Electrochim. Acta. 109 (2013) 587-594.
  48. K.-J. Huang, J.-Z. Zhang, G.-W. Shi, Y.-M. Liu, Mater. Lett. 131 (2014) 45-48.
  49. J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Nano Energy. 7 (2014) 151-160.
  50. S. Ratha, C.S. Rout, ACS Appl. Mater. Interfaces. 5 (2013) 11427-11433.
  51. D. Chakravarty, D.J. Late, RSC Adv. 5 (2015) 21700-21709.
  52. K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.-B. Wang, T. Gan, L.-L. Wang, Int. J. Hydrog. Energy. 38 (2013) 14027-14034.
  53. G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, J. Power Sources. 229 (2013) 72-78.
  54. H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, J. Power Sources. 243 (2013) 396-402.
  55. B. Hu, X. Qin, A.M. Asiri, K.A. Alamry, A.O. Al-Youbi, X. Sun, Electrochem. Commun. 28 (2013) 75-78.
  56. K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, Mater. Res. Bull. 50 (2014) 499-502.
  57. B. Hu, X. Qin, A.M. Asiri, K.A. Alamry, A.O. Al-Youbi, X. Sun, Electrochim. Acta. 100 (2013) 24-28.
  58. K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Electrochim. Acta. 132 (2014) 397-403.
  59. M. Mandal, D. Ghosh, S.S. Kalra, C.K. Das, Int. J. Latest Res. Sci. Technol. 3 (2014) 65-69.
  60. G. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Angew. Chem. Int. Edit. 53 (2014) 12576-12580.
  61. X. Han, X. Jiang, S. Yin, Advan. Mater. Res. 773 (2013) 524-529.
  62. E.G. da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Advan. Energy Mater. 4 (2014).
  63. J.M. Soon, K.P. Loh, Electrochem. Solid-State Lett. 10 (2007) A250-A254.
  64. Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, Advan. Mater. 26 (2014) 8163-8168.
  65. L.E. Brus, J. Chem. Phys. 80 (1984) 4403-4409.
  66. G. Wang, I.C. Gerber, L. Bouet, D. Lagarde, A. Balocchi, M. Vidal, T. Amand, X. Marie, B. Urbaszek, 2D Mater. 2 (2015) 045005.
  67. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Nano Lett. 12 (2012) 5576-5580.
  68. Y. Lee, S.B. Cho, Y.-C. Chung, ACS Appl. Mater. Interfaces. 6 (2014) 14724-14728.
  69. I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, A.F. Morpurgo, Nano Lett. 15 (2015) 2336-2342.
  70. Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.-S. Hu, K.R. Heier, L. Chen, R. Seshadri, G.D. Stucky, Nano Lett. 9 (2009) 4215-4220.
  71. J. Ni, Y. Zhao, L. Li, L. Mai, Nano Energy. 11 (2015) 129-135.
  72. B. Hu, L. Mai, W. Chen, F. Yang, ACS Nano. 3 (2009) 478-482.
  73. C. Ataca, H. Şahin, S. Ciraci, J. Phys. Chem. C. 116 (2012) 8983-8999.
  74. Z. Xiang, Q. Zhang, Z. Zhang, X. Xu, Q. Wang, Ceram. Int. 41 (2015) 977-981.
  75. P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei, X. Zhao, J. Mater. Chem. A. 2 (2014) 2742-2756.
  76. A. Angelica, K.C. Santosh, P. Xin, L. Ning, M. Stephen, Q. Xiaoye, D. Francis de, A. Rafik, K. Jiyoung, J.K. Moon, C. Kyeongjae, M.W. Robert, 2D Mater. 2 (2015) 014004.
  77. H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 13 (2013) 3426-3433.
  78. A. Conan, A. Bonnet, A. Amrouche, M. Spiesser, J. Phys. 45 (1984) 459-465.
  79. A. Roy, H.C.P. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik, S. Guchhait, E. Tutuc, S.K. Banerjee, ACS Appl. Mater. Interfaces. 8 (2016) 7396-7402.
  80. C.A. Wolden, R.M. Morrish, Google Patents, 2015.
  81. A. Chen, C. Li, R. Tang, L. Yin, Y. Qi, Phys. Chem. Chem. Phys. 15 (2013) 13601-13610.
  82. E. Miliordos, S.S. Xantheas, Phys. Chem. Chem. Phys. 16 (2014) 6886-6892.
  83. E. Miliordos, S.S. Xantheas, Theor. Chem. Acc. 133 (2014) 1-12.
  84. O. Ghodbane, J.-L. Pascal, F. Favier, ACS Appl. Mater. Interfaces. 1 (2009) 1130-1139.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.