Small-signal stability is one of the main factors limiting power transmission in conventional power systems. This concern is primarily handled by adding damper windings of a synchronous generator and power-system stabilizer (PSS). However, due to the impact of the N-1 contingency, damper windings and a conventional PSS are insufficient to overcome this problem. Proper placement and design of the PSS are crucial for improving stability. One approach to optimizing the placement and tuning of the PSS is to use an artificial-intelligence method. Here, the cuckoo-search algorithm (CSA) is proposed to optimize the PSS tuning and placement. Based on simulation, it is found that a PSS based on the CSA can enhance the system’s small-signal stability. The critical, local, and inter-area modes of the investigated system improve significantly. The oscillatory condition is more highly damped, as indicated by a smaller overshoot and faster settling time. It is also found that the CSA can be used to tune the PSS parameter under an N-1 contingency. From the analytical results of the N-1 contingency condition, optimal tuning of the PSS parameters was obtained, resulting in PSS-placement options for generators 1 to 7 and 12 to 15, producing a minimum damping of 0.611.

Bahasa Abstract

Peningkatan Kestabilan Sinyal Kecil Menggunakan Power System Stabilizer Berbasis Algoritma Burung Cuckoo pada Kontingensi N-1 Sistem 150 kV Sulselrabar. Stabilitas sinyal kecil adalah salah satu faktor utama yang membatasi transmisi daya dalam sistem tenaga konvensional. Penanganan stabilitas ditangani dengan menambahkan Damper Winding pada generator sinkron dan Power System Stabilizer (PSS). Namun, karena dampak kontingensi N-1, Damper Winding dan PSS konvensional tidak cukup untuk mengatasi masalah ini. Penempatan dan desain PSS yang tepat sangat penting untuk meningkatkan kontribusinya terhadap stabilitas. Salah satu pendekatan untuk mengoptimalkan penempatan dan penyetelan PSS adalah menggunakan metode kecerdasan buatan. Dalam tulisan ini, Cuckoo search algorithm (CSA) diusulkan untuk menyelesaikan optimalisasi tuning dan penempatan PSS. Dari hasil simulasi, ditemukan bahwa PSS berdasarkan CSA dapat meningkatkan stabilitas sinyal kecil dari sistem. Critical mode, lokal dan inter-area dari sistem yang diteliti meningkat secara signifikan. Kondisi osilasi lebih teredam ditunjukkan oleh overshoot kecil dan waktu penyelesaian yang lebih cepat. Ditemukan juga bahwa CSA dapat menjadi metode untuk menyetel parameter PSS di bawah N-1 kontingensi. Dari hasil analisis kondisi kontingensi N-1, penyetelan parameter PSS optimal diperoleh, dan menghasilkan opsi penempatan PSS pada generator 1 hingga 7, dan 12 hingga 15, yang menghasilkan redaman minimum 0,611.


A.U. Krismanto, M. Nadarajah, O. Krause,

Proceedings 2015 IEEE PES Asia-Pacific Power

and Energy Engineering Conference (APPEEC),

Brisbane, Australia, 2015, p.55.

R. Shah, N. Mithulananthan, Proceedings of The A comparison of ultracapacitor, BESS and shunt capacitor on oscillation damping of power system with large-scale PV plants, AUPEC, Australia, 2011, p.1-6.

M. Qemali, R. Bualoti, M. Çelo, Proceedings of The Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), Belgrade, Serbia, 2016, p. 1-8.

H. Setiadi, K.O. Jones, Int. J. Elec. Eng. Educ. Comput. Sci. 1 (2016) 446.

L.H. Hassan, M. Moghavvemi, H.A. Almurib, K. Muttaqi, V.G. Ganapathy, Int. J. Electr. Power Energy Syst. 55 (2014) 668.

M. Eslami, H. Shareef, A. Mohamed, M. Khajehzadeh, Int. J. Electr. Power Energy Syst. 43 (2012) 1467.

H. Shayeghi, M. Moradzadeh, A. Ghasemi, L. Vandevelde, Power and Energy Engineering Conference (APPEEC), 2013 IEEE PES Asia-Pacific, Kowloon, China, 2013, p. 1-5.

Z. Wang, C. Chung, K. Wong, C. Tse, IET Gener. Transm. Distrib. 2 (2008) 6900.

T.T. Nguyen, A.V. Truong, Int. J. Electr. Power Energy Syst. 68 (2015) 233.

A.H. Gandomi, X.-S. Yang, A.H. Alavi, Eng. Comput. 29/1 (2013) 17.

A.U. Krismanto, N. Mithulananthan, O. Krause, IEEE Innovative Smart Grid Technologies-Asia, New Jersey, US, 2016, pp.424.

K. Prasertwong, N. Mithulananthan, D. Thakur, Int. J. Elec. Eng. Educ. 47 (2010) 248.

X. Sui, Y. Tang, H. He, J. Wen, IEEE Trans. Power Syst. 29 (2014) 2539.

P.M. Anderson, A.A. Fouad, Power System Control and Stability, John Wiley & Sons, United State of America, 2003.

M.R. Djalal, A. Imran, I. Robandi, 2015 Inter-national Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 2015, pp. 147.

J. Machowski, J. Bialek, J. Bumby, Power system dynamics: Stability and control, John Wiley & Sons, New Jersey, 2011.

P. Kundur, N.J. Balu, M.G. Lauby, International Electrical Engineer with Over 35 Years of Experience in The Electric Power Industry, vol. 7, Power System Stability and Control, McGraw-hill, New York, 1994.

X.-S. Yang, Theory and Applications, vol. 516, Cuckoo Search and Firefly Algorithm, Springer, Berlin, 2013.

A.A. El-fergany, A.Y. Abdelaziz, IET Gener. Transm. Distrib. 8 (2014) 223.

M.R. Djalal, D. Ajiatmo, A. Imran, I. Robandi, Prosiding SENTIA. 7 (2015) 121.

M.R. Djalal, D. Ajiatmo, Soedibyo, I. Robandi, Prosiding SENTIA 2015, 7 (2015) 73.

N.J. Cheung, X.M. Ding, H.B. Shen, IEEE Trans. Cybern. 47 (2017) 391.

Cited By




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.