•  
  •  
 

Abstract

Like most cities in the world, population in Indonesia continues to grow every year. Problems that can arise from this are the increasing amount of municipal solid waste (MSW) production and the growing demand for electricity. To deal with the problems, Indonesian government runs 3R (Reduce, Reuse and Recycle) and WTE (Waste to Energy) Programs simultaneously. 3R program aims to reduce the number of waste, while WTE program aims to generate electricity as an alternative energy source. This study aims to find out the optimal proportion of MSW treated through the 3R and WTE programs. For the purpose, a goal programming model has been developed and solved using LINGO 11. The results showed that the optimal proportion of MSW through the 3R program is 49.90%, 12.37% through WTE program. This leaves 37.73% of waste untreated. The electricity generated from WTE program reached 1,229.695 GWh, total emissions that can be saved is 1,809,208.2 tons CO2 equivalent and total land-use for the programs is 4,036,239.1 m2. This study was enriched by performing some scenarios, i.e. adding budget allocation of WTE program, tightening the limit of total emission from waste management and reducing the limit of land-use for waste treatment.

Bahasa Abstract

Optimasi Program 3R dan WTE untuk Sampah Perkotaan di Indonesia. Seperti umumnya kota-kota di dunia, penduduk kota-kota besar di Indonesia terus bertambah tiap tahun. Keadaan ini memunculkan dua permasalahan yaitu bertambahnya jumlah sampah kota (MSW) dan bertambahnya permintaan akan listrik. Untuk mengatasi permasalahan tersebut, pemerintah memunculkan program 3R (Reduce, Reuse, and Recycle) dan program WTE (Waste to Energy) secara bersamaan. Program 3R bertujuan mengurangi jumlah sampah yang dibuang sedangkan program WTE bertujuan memanfaatkan sampah sebagai alternative untuk menghasilkan listrik. Penelitian ini untuk menjawab berapa porsi sampah yang optimal untuk digunakan untuk membangkit listrik dan berapa untuk 3R. Untuk tujuan tersebut telah dibuat model goal programming dan dipecahkan dengan menggunakan software optimasi Lingo release 11. Hasil running dari model yang dibangun menunjukkan bahwa porsi MSW yang dapat dikelola lewat 3R adalah 49,90%, lewat WTE 12,37%. Sisanya 37,73% sampah tidak terkelola. Listrik yang dihasilkan dari program WTE ini mencapai 1.229,695 GWh. Emisi yang dapat dikurangi sebesar 1.809.208,2 tons CO2 equivalen dan total lahan yang digunakan adalah 4.036.239,1 m2. Dalam penelitian ini juga dilakukan beberapa skenario yaitu penambahan alokasi dana pada program WTE, pengetatan emisi dan berkurangnya luas lahan yang dapat digunakan.

References

  1. Badan Pusat Statistik (BPS), Statistik Indonesia: Statistical Yearbook of Indonesia 2015, http://istmat.info/files/uploads/47409/statistical_yearbook_ of_indonesia_2015.pdf, 2015.
  2. Y.T. Chong, K.M. Teo, L.C. Tang, A lifecyclebased sustainability indicator framework for wasteto-energy systems and a proposed metric of sustainability, Renew. Sustain. Energy Rev. 56 (2015) 787.
  3. Kementerian Lingkungan Hidup dan Kehutanan. Presentasi Kementerian Lingkungan Hidup dan Kehutanan. http://www.menlh.go.id/, 2014 (in Indonesia).
  4. Perusahaan Listrik Negara (PLN), Rencana Umum Pembangkit Tenaga Listrik 2015-2024. Perusahaan Listrik Negara, Jakarta, 2014 (in Indonesia).
  5. Perusahaan Listrik Negara (PLN), Statistik PLN 2014. Perusahaan Listrik Negara, Jakarta, 2014 (in Indonesia).
  6. Kementerian Lingkungan Hidup dan Kehutanan, Laporan Kementerian Lingkungan Hidup dan Kehutanan 2013. Ministry of Environment and Forests, Jakarta, 2013.
  7. N.-B. Chang, C. Qi, K. Islam, F. Hossain, J. Clean. Prod. 20 (2011) 1.
  8. United States Environmental Protection Agency, Landfill Methane Outreach Program, http://www. epa.gov, 2014.
  9. P.H. Farizal, A. Rachman, Preceeding of Regional Conference on Mechanical and Manufacturing Engineering RCMME. Kuala Lumpur, Malaysia, 2013.
  10. B. Samiha, Mediterr. J. Soc. Sci.4/3 (2013) 129.
  11. H. Aadal, K.G. Rad, A.B. Fard, P.G. Sabet, J. Appl. Environ. 3/10 (2013) 160.
  12. Q.Z. Yang, J. Zhou, K. Xu, Int. J. Environ. Sci. Dev. 5/2 (2014) 217.
  13. A. Tozlu, E. Özahi, A. Abuşoğlu, Renew. Sustain. Energy Rev. 54 (2016) 809.
  14. M. Münster, P. Meibom, Energy 36/3 (2011) 1612.
  15. Y.H. Cheng, Bioresour. Technol. 101/11 (2010) 381.
  16. H.A. Taha, Operations Research: an Introduction, 8th ed, Pearson International Edition, 2007.
  17. United States Environmental Protection Agency, Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide, https://www3.epa.gov/ttncatc1/ dir1/landgem-v302-guide.pdf, 2005.
  18. Argonne National Laboratory. Updated Greenhouse Gas and Criteria Air Pollutant Emissions Factor and Their Probabilty Distribution Functions for Electric Generating Units. US Department of Energy, Chicago, 2012.
  19. B.K. Adhikari, A. Trémier, S. Barrington, J. Martinez, M. Daumoin, J. Environ. Manage. 116 (2013) 163.
  20. E. Damanhuri, Revitalisasi – Rehabilitasi TPA open dumping menuju TPA yang lebih baik. Workshop InovasiTeknologiPeningkatanKualitas TPA.DitJendCiptaKarya, Jakarta, 2009 (in Indonesian).
  21. KementerianEnergiSumberDayaManusia. StatistikEnergiBaruTerbarukandanKonservasiEnergi (EBTKE) 2014. Ministry of Energy and Mineral Resources, Jakarta, 2014 (in Indonesian).
  22. Lindo Systems Inc., LINGO 17.0 - Optimization Modeling Software for Linear, Nonlinear, and Integer Programming, http://lindo.com/index.php/products/ lingo-and-optimization-modeling, 2017.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.