•  
  •  
 

Abstract

Automatic control system is widely applied to control the ship direction or heading angle in accordance with the decided trajectory. Several methods for improving performance of control system have been developed such as Proportional-Integral-Derivative (PID) control and fuzzy logic based control. Within the last decade, application of automatic control system is not only for ship navigation but also for avoiding collision risk of ships in seaways. This paper discusses the application of automatic control system for avoiding ship collision by free running experiment. Fuzzy logic based control was developed using Mamdani Centroid method to estimate the necessary rudder angle in order to change the ship heading angle. Collision scenario was designed using four fixed obstacles with a certain distance which will be avoided by ship model. The results of free running experiment showed that the automatic control system can minimize the risk against collision or at least provide initial warning that may be faced by the ship. with minimum distance of 3.50 of length between perpendicular. To improve performance of control, external disturbance such as wind and wave should be considered in the design of automatic control system.

Bahasa Abstract

Studi Eksperimental Kendali Otomatis untuk Pencegahan Tabrakan pada Kapal Laut. Sistem kendali otomatis telah banyak diaplikasikan untuk mengendalikan arah gerak atau sudut haluan kapal sesuai dengan jalur lintasan yang telah ditentukan. Beberapa metode untuk memperbaiki unjuk kerja sistem kendali otomatis telah dikembangkan seperti kendali Proportional-Integral-Derivative (PID) dan kendali berbasis logika fuzzy. Dalam satu dekade terakhir, aplikasi sistem kendali otomatis tidak terbatas hanya untuk peralatan navigasi tetapi telah dikembangkan untuk membantu dalam menghindari kemungkinan terjadinya tabrakan kapal selama pelayaran. Penelitian ini membahas tentang aplikasi sistem kendali otomatis untuk pencegahan tabrakan kapal dengan pengujian model. Sistem kendali berbasis logika fuzzy digunakan untuk mengontrol sudut kemudi sesuai dengan sudut heading atau arah gerak kapal yang diinginkan dengan menggunakan metode Mamdani Centroid. Skenario tabrakan dalam pengujian model didesain dengan menggunakan 4 penghalang yang harus dihindari oleh kapal. Hasil pengujian model menunjukkan bahwa sistem kendali dapat memperkecil resiko tabrakan kapal atau minimal dapat memberikan peringatan dini akan potensi tabrakan yang mungkin dihadapi oleh kapal. Untuk memperbaiki kinerja sistem kendali, gangguan dari luar seperti angin dan gelombang harus dipertimbangkan dalam perancangan sistem kendali otomatis kapal.

References

  1. IMO, Collision regulation (COLREG), IMO, London, 1972.
  2. L.P. Perera, J.P. Carvalho, G.C. Soares, Proceedings of the International Workshop “Advanced Ship Design for Pollution Prevention”, Split, Kroasia, 2009.
  3. M.C. Tsou, C.K. Hsueh, J. Mech. Sci. Technol. 18/5 (2010) 746.
  4. C. Tam, R. Bucknall, J. Mech. Sci. Technol. 15/4 (2010) 395.
  5. C.H. Shih, P.S. Huang, S. Yamamura, C.Y. Chen, JMST. 20/2 (2012) 111.
  6. M. Fahmi, Thesis, Deptartment of Naval Architecture, Faculty of Engineering, UniversitasHasanuddin, Indonesia, 2016.
  7. H. Yasukawa, Y. Yoshimura, J. Mech. Sci. Technol. 20 (2015) 37.
  8. I.P.S. Asmara, E. Kobayashi, K.B. Artana, A.A. Masroeri, N. Wakabayashi, Proceedings of Inter-national Conference “Ocean, Offshore and Artic Engineering, San Francisco, USA, 2014.
  9. Y. Yoshimura, Y. Masumoto, Proceedings of the International Conference “Marine Simulation and Ship Maneuverability (MARSIM)”, Singapore, 2012.
  10. K. Kijima, T. Katsuno, Y. Nakiri, Y. Furukawa, J. Soc. Naval Arch. Jpn. 168 (1990) 141.
  11. D. Paroka, A.H. Muhammad, S. Asri, JurnalTeknologi, 76/1 (2015) 67.
  12. D. Paroka, A.H. Muhammad, S. Asri, MJTS, 20/1 (2016) 24.
  13. [H. Kobayashi, A. Ishibashi, Y. Hasegawa, Y. Nakanishi, Proceedings of Conference Japan Society of Naval Architects and Ocean Engineers, Japan, 2005.
  14. S. Khanfir, K. Hasegawa, V. Nagarajan, K. Shouji, S.K. Lee, J. Mech. Sci. Technol. 16 (2011) 472.
  15. J.S. Carlton, Marine Propellers and Propulsions, 2nd ed, Elsevier, United States of America, 2007, p. 103.
  16. K.M. Lee, D. Kim, D. Lee, JACE, 3/6 (2015) 442.
  17. J. Velagic, Z. Vukic, G.N. Ormedic, CEP, 11 (2003) 433.
  18. E. Omerdic, G.N. Roberts, Z. Vukic, J. Marine Eng. Technol. 2/1 (2003) 23.
  19. Y.J. You, K.-P. Rhee, K.S. Ahn, Int. J. Naval Arch. Ocean Eng. 5/2 (2013) 188.
  20. L.L. Martin, Soc. Naval Arch. Marine Eng.Trans. 88 (1980) 257.
  21. N. Sanjay, J. Adinath, S.A. Hariprasad, Int. J. Comput. Trends Technol. 4/6 (2013) 1858.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.