•  
  •  
 

Abstract

Adsorption of Cu(II) ions from aqueous solution using activated carbon prepared from Limonia acidissima fruit shell (LAFS-AC) was conducted in batch mode experiments at pH 5 (±0.15), 100 rpm and 1 atm. The effects of contact time, initial Cu(II) ions concentration, KOH concentration, and adsorption temperature on Cu(II) ions adsorption capacity were investigated. Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy analyses were performed to investigate the active site and surface morphology of the LAFS-AC, respectively. The Cu(II) ions adsorption was fitted very well (R2 = 0.94 on average) to the pseudo second-order adsorption kinetic with the adsorption capacity and rate being 25.58 mg/g and 0.07 g/mg.min, respectively at 27 oC by the LAFS AC activated using 0.5 M KOH. It was 26.88 mg/g and 0.15 g/mg.min, respectively at 60 oC. The Cu(II) ions adsorption followed the Langmuir adsorption isotherm model (LAIM) (R2 = 0.98 on average). The LAIM adsorption capacity and constant were 26.67 mg/g and 0.03 L/g, respectively at 27 oC. It increased dramatically to 0.09 L/g at 60 oC. The optimal adsorption condition obtained was the 0.5 M KOH activated LAFS-AC, initial Cu(II) concentration of 509.81 mg/L and 120-min contact time at 60 oC with the Cu(II) ions adsorption capacity of 26.95 mg/g.

Bahasa Abstract

Adsorpsi Ion Cu(Ii) di dalam Larutan Berair menggunakan Karbon Aktif Berbasis Kulit Buah Limonia acidissima: Studi Kinetika dan Isotermal. Adsorpsi ion Cu(II) dari larutan berair menggunakan karbon aktif yang dibuat dari kulit buah Limonia acidissima (LAFS-AC) dilakukan pada percobaan dengan sistem batch pada pH 5 (± 0,15), 100 rpm dan 1 atm. Efek waktu kontak, konsentrasi awal ion Cu(II), konsentrasi KOH, dan suhu adsorpsi pada adsorpsi ion Cu (II) diselidiki. Analisis spektroskopi FTIR dan SEM dilakukan untuk menyelidiki morfologi bagian aktif dan permukaan LAFS-AC. Adsorpsi ion Cu(II) memiliki kemiripan (R2 rata-rata = 0,94) terhadap kinetika adsorpsi pseudo orde kedua dengan kapasitas adsorpsi dan laju masing-masing 25,58 mg/g dan 0,07 g/mg.min pada suhu 27 oC pada LAFS-AC aktif menggunakan 0,5 M KOH. Pada suhu 60 oC, nilainya menjadi 26,88 mg/g dan 0,15 g/mg.min. Adsorbsi ion Cu(II) mengikuti model adsorpsi isotherm Langmuir (LAIM) (R2 = 0,98 rata-rata). Kapasitas adsorpsi LAIM dan konstanta masing-masing bernilai 26,67 mg/g dan 0,03 L/g pada suhu 27 oC. Pada suhu 60 oC, nilainya meningkat secara dramatis menjadi 0,09 L/g. Kondisi adsorpsi optimal yang diperoleh adalah 0,5 M KOH pada LAFS-AC aktif, konsentrasi awal Cu(II) 509,81 mg/L dan waktu kontak 120 menit pada suhu 60 oC dengan kapasitas adsorpsi ion Cu(II) sebesar 26,95 mg/g.

References

  1. S.J. Hawkes, J. Chem. Educ. 74 (1997) 1374.
  2. M. Bala, R.A. Shehu, M.J. Lawal, Pure Appl. Sci. 1 (2008) 6.
  3. N.K. Srivastava, B.C. Majumder, J. Hazard Mater. 151 (2008) 1.
  4. G. Yan-Biao, F. Hong, C. Chong, J. Chong-Jian, X. Fan, L. Ying, Pol. J. Environ. Stud. 22 (2013) 1357.
  5. L. Dimple, Int. J. Environ. Res. Dev. 4 (2014) 41.
  6. E. Munaf, T. Takeuchi, In Hazardous Waste Control in Research and Education, C.R.C. Press, Boca Raton, F.L., 1994.
  7. L.K. Carl, J.M Harry, M.W. Elizabeth, A review: The impact of copper on human health, International Copper Association Ltd., New York, 2003, p. 19.
  8. T. Theophanides, J. Anastassopoulou, Crit. Rev. Oncol./Hematol. 42/1 (2002) 57.
  9. M. Minamisawa, H. Minamisawa, S. Yoshida, N. Takai, J. Agr. Food Chem. 52/18 (2004) 5606.
  10. J.M Tobin, J.C. Roux, Water Res. 32 (1998) 1407.
  11. H. Eccles, Trends Biotechnol. 17/12 (1999) 462.
  12. W.C. Leung, M.F. Wong, H. Chua, W. Lo, P.H.F. Yu, C.K. Leung, Water Sci. Technol. 41/12 (2000) 233.
  13. K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Chemosphere, 50 (2003) 23.
  14. H. Gupta, P.R. Gogate, Ultrason. Sonochem. 30 (2016) 11.
  15. M.C. Baquero, L. Giraldo, J.C. Moreno, F. SuárezGarcía, A. Martínez-Alonso, J.M.D. Tascón, J. Anal. Appl. Pyrol., 70/2 (2003) 779.
  16. M.C. Basso, E.G. Cerrella, A.L. Cukierman, Ind. Eng. Chem. Res. 41/15 (2002) 3580.
  17. A. Muslim, Zulfian, M.H. Ismayanda, E. Devrina, H. Fahmi, J. Eng. Sci. Technol. 10/12 (2015) 1654.
  18. ResearchInChina., China Activated Carbon Industry Report 2014-2017, 2015.
  19. K.T. Klasson, L.H. Wartelle, E. James, J.E. Rodgers, I.M. Lima, Ind. Crop. Prod. 30/1 (2009) 72.
  20. J.C. Moreno-Pirajan, L. Giraldo, J. Anal. Appl. Pyrol. 87/2 (2010) 188.
  21. H. Runtti, S. Tuomikoski, T. Kangas, U. Lassi, T. Kuokkanen, J. Rämö, J. Water Process Eng. 4 (2014) 12.
  22. M. Imamoglu, O. Tekir, Desalination, 228/1–3 (2008) 108.
  23. F. Bouhamed, Z. Elouear, J. Bouzid, J. Taiwan Inst. Chem. Eng. 43/5 (2012) 741.
  24. D.D. Milenković, A.L.J. Bojić, V.B. Veljković, Ultrason. Sonochem. 20/3 (2013) 955.
  25. A. Muslim, J. Eng. Sci. Technol. 12/2 (2017) 280.
  26. J. Morton, 1987. Wood apple. J. Food Sci. Agric. 15/10 (1987) 191.
  27. A. Chevallier, The Encyclopedia of Medicinal Plants Publication, Dorling Kindersley. London, 1996.
  28. S.S. Ashish M.M. Aniruddha, V.J Vikas, D.R. Prakash, A.A. Mansing, S.K. Sanjay, Arabian J. Chem. 6 (2013) S878.
  29. M.D. Kailas, M.K. Ejazuddin, Arabian J. Chem., 10 (2017) S252. T.A.G. Kurniawan, Y.S. Chan, W. Lo, S. Babel, Sci. Total Environ. 366/2–3 (2006) 409.
  30. M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solono, Carbon, 43 (2005) 1758.
  31. D. Lozano-Castello, M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solono, Carbon, 39 (2001) 741.
  32. T. Yang, A.C. Lua, J. Colloid Interface Sci. 267/2 (2003) 408.
  33. E. Demirbas, N. Dizge, M.T. Sulak, M. Kobya, Chem. Eng. J., 148/2–3 (2009) 480.
  34. P. Chakravarty, N.S. Sarma, H.P. Sarma, Desalination, 256 (2010) 16.
  35. S.R. Rao, Surface Chemistry of froth flotation: Volume 1: Fundamentals. Springer Science New York, USA, 2004.
  36. R.L. Tseng, S.K. Tseng, J. Colloid Interface Sci. 287/2 (2005) 428.
  37. K. Pontas, A. Muslim, Makara J. Technol. 19/3 (2015) 120.
  38. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, J. Hazard. Mater. 164/2–3 (2009) 473.
  39. E. Worch, Adsorption technology in water treatment: Fundamentals, processes, and modeling. Walter de Gruyter, Berlin, 2012.
  40. S. Lagergren, S. Kungliga, Sven. Vetensk. Akad. Handl. 24/4 (1989) 1.
  41. Y.S. Ho, D.A.J. Wase, C.F. Forster, Environ. Technol. 17 (1996) 71.
  42. I. Langmuir, J. Am. Chem. Soc. 40/9 (1918) 1361.
  43. A. Zengin, M.K. Akalin, K. Tekin, M. Erdem, T. Turga, K. Karagoz, Ekoloji, 21/85 (2012) 123.
  44. S. Karagoz, T. Tay, S. Ucar, M. Erdem, Bioresour. Technol. 99 (2008) 6214.
  45. H. Freundlich, J. Phys. Chem, 57 (1906) 384.
  46. R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Portier, Bioresour. Technol. 89/2 (2003) 115.
  47. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Bioresour. Technol. 96/13 (2005) 1518.
  48. M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, J. Colloid. Interface Sci. 292/2 (2005) 354.
  49. W.D.P. Rengga, A. Chafidz, M. Sudibandriyo, M., M. Nasikin, A.E. Abasaeed, J. Environ. Chem. Eng. 5/2 (2017) 1657.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.