•  
  •  
 

Abstract

This paper reports the synthetic, characterization and theoretical evaluation of new class of hybrid Heck-immine system involving mixed moieties of vinylene (C=C) and azomethines (CH=N) which has been successfully integrated into an addition of organic semiconducting materials. The assessment of 4-[(hexyloxyphenyl)methylene]amino)-4’-chloro-stilbene (HEXCS) based on Donor (D)-π-Acceptor (A) was evaluated as active semiconductor material candidates via several spectroscopic and analytical techniques. In turn, the investigation of its potential as dopant system in conductive film was successfully deposited on indium tin oxide (ITO) coated substrate via spin coating method. The relationship between electronic and optical properties, chemical modelling at molecular interactions and electrical performances of the designated system were evaluated. In addition, the quantum mechanical calculation proved that the value of energy separation of HEXCS between HOMO and LUMO exhibits 3.09 eV which was in good agreement with the experimental result of optical band gap 3.10 eV. The findings from the thermal and conductivity analysis revealed that the developed film HEXCS exhibited good stability at high temperature and electrical performance with an increasing conductivity up to 0.1531 Scm-1 under maximum light intensity of 100 Wm-2. Therefore, this proposed type of molecular framework has given an ideal indication to act as semiconductor material candidates potentially use in any designated electronic application.

Bahasa Abstract

Penilaian Turunan Heck-Immine sebagai Material Organik Semikonduktor. Penelitian ini melaporkan tentang kajian sintetik, karakterisasi dan evaluasi teoritis bagi kelas baru dari sistem hibrid Heck-imina yang melibatkan perpaduan unsur vinilen (C=C) dan azometina (CH=N) yang telah berhasil diintegrasikan sebagai bahan tambahan pada material semikonduktor organik. Penilaian 4-[(heksiloksifenil)metilena]amino)-4’-kloro-stilben (HEXCS) berdasarkan donor (D)-π-penerima (A) dievaluasi sebagai kandidat bahan semikonduktor aktif melalui beberapa teknik spektroskopi dan analitis. Selanjutnya, penelitian mengenai potensinya sebagai sistem dopan pada film konduktif, HEXCS berhasil diendapkan pada substrat yang dilapisi indium tin oksida (ITO) melalui metode spin coating. Hubungan antara sifat elektronik dan optik, pemodelan kimia pada interaksi molekuler dan kinerja elektrik dari sistem ini juga telah dievaluasi. Sebagai tambahan, perhitungan mekanikal kuantum membuktikan bahawa nilai pemisahan energi HEXCS di antara HOMO dan LUMO adalah 3.09 eV, dimana nilai tersebut mendekati nilai eksperimen dengan nilai 3.10 eV. Temuan dari analisis termal dan konduktivitas menunjukkan bahwa film HEXCS yang dikembangkan menunjukkan stabilitas yang baik pada suhu tinggi dan kinerja elektrik yang baik dengan peningkatan nilai konduktivitas 0.1531 Scm-1 menggunakan intensitas cahaya maksimum sebesar 100 Wm-2. Oleh karena itu, kerangka molekul yang diusulkan ini ideal digunakan sebagai kandidat material semikonduktor yang berpotensi digunakan dalam berbagai aplikasi elektronik.

References

  1. W. Jiang, Y. Li, Z. Wang, Chem. Soc. Rev. 42 (2013) 6113.
  2. P. Huang, J. Du, M.C. Biewer, M.C. Stefan, J. Mater. Chem. 3 (2015) 6244.
  3. H.E. Katz, Z. Bao, S.L. Gilat, Acc. Chem. Res. 34 (2001) 359.
  4. W. Ni, X.J. Wan, M.M. Li, Y.C. Wang, Y.S. Chen, Chem. Commun. 51 (2015) 4936.
  5. A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16 (2004) 4556.
  6. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 112 (2012) 2208.
  7. Y. Lin, Y. Li, X. Zhan, Chem. Soc. Rev. 41 (2012) 4245.
  8. R.S. Kularatne, H.D. Magurudeniya, P. Sista, M. C. Biewer, M.C. Stefan, J. Polym. Sci. Part A: Polym. Chem. 51 (2013) 743.
  9. A. Moliton, R.C. Hiorns, Polym. Int. 53 (2004) 1397.
  10. P.M. Beaujuge, J.M. Frechet, J. Am. Chem. Soc. 133 (2011) 20009.
  11. I. McCulloch, M. Heeney, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M.L. Chabinyc, R.J. Kline, M.D. McGehee, M.F. Toney, Nat. Mater. 5 (2006) 328.
  12. H. Zhou, L. Yang, W. You, Macromolecules 45 (2012) 607.
  13. A. Gamliel, M. Afri, A.A. Frimer, Free Radical Biol. Med. 44 (2008) 1394.
  14. A. Spencer, J. Organomet. Chem. 247 (1983) 117.
  15. Z. Puterová, J. Romiszewski, J. Mieczkowski, E. Gorecka, Tetrahedron, 68 (2012) 8172.
  16. J.Y. Lee, H.J. Song, S.M. Lee, J.H. Lee, D.K. Moon, Eur. Polym. J., 47 (2011) 1686.
  17. F. Gao, T. Xie, Z. Cheng, N. Hu, L. Yang, Y. Gong, S. Zhang, H. Li, J. Fluoresc. 18 (2008) 787.
  18. M. Morshedi, M. Amirnasr, S. Triki, A.D. Khalaji, Inorg. Chim. Acta 362 (2009) 1637.
  19. S. Ilhan, H. Temel, I. Yilmaz, M. Sekerci, J. Organomet. Chem. 692 (2007) 3855.
  20. J.C. Costa, R.J. Taveira, C.F. Lima, A. Mendes, L.M. Santos, Opt. Mater. 58 (2016) 51.
  21. R. Rahamathullah, W.M. Khairul, K. Ku Bulat, Z.M. Hussin, Main Group Chem. 14 (2015) 185.
  22. X.T. Wu, W. Wang, B. Li, Y.J. Hou, H.J. Niu, Y.H. Zhang, S.H. Wang, X.D. Bai, Spectrochim. Acta A 140 (2015) 398.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.