In the past few decades, the unique properties of acetylide and thiourea moieties individually have attracted great attention from researchers in various fields to be developed in numerous applications in advanced materials technology, especially as an active layer in gas sensing devices. The molecular systems of acetylide and thiourea provide a wide range of electronic properties as they possess rigid π-systems in their designated structures. In this study, a derivative of acetylide-thiourea featuring N-(4[4-aminophenyl] ethynyl benzonitrile)-N’-(4-ethyl benzoyl) thiourea (TCN) has been synthesised with the general formula of ArC(O)NHC(S)NHC≡C)Ar adopted the system of D-π-A for the significant development of conductive materials. The derivative consists of donating substituent characterised by typical spectroscopic techniques, such as infrared spectroscopy, UV-visible spectroscopy, and 1H and 13C Nuclear Magnetic Resonance. In turn, TCN was deposited onto interdigitated electrode (IDE) for the measurement of thin-film resistance. The resistance values of synthesised compound is caused the effect of donating substituent attached to the acetylide-thiourea, which indeed altered the conductivity performances of fabricated IDE substrate. In fact, the theoretical calculation also was carried out using Gaussian 09 to evaluate the relationship between experimental and theoretical analyses of acetylide-thiourea semiconductor properties in term of energy band gap and the sensing response to the selected analyte.

Bahasa Abstract

Studi Sifat Semikonduktor Asetilida-Thiourea sebagai Substrat Elektroda Terdigitasi (IDEs) menuju Aplikasi dalam Teknologi Penginderaan Gas. Bio ethanol adalah salah satu bahan bakar potensial di masa depan. Namun campuran etanol dalam air memiliki titik azeotrop pada konsentrasi 95,6 % berat, sehingga sulit untuk dimurnikan lebih lanjut. Metode umum yang dipakai dalam pemurnian etanol adalah menggunakan kolom distilasi azeotropik yang membutuhkan energi yang intensif dan penambahan solven tertentu. Pada penelitian ini, pemurnian etanol dilakukan dengan kolom adsorpsi dengan bahan isian cincin zeolite di dalamnya. Zeolit alam sebelum digunakan dimodifikasi dengan larutan NaOH agar kemampuan penjerapan (adsorpsi) air menjadi meningkat. Kemurnian etanol dapat mencapai lebih dari 99% dengan zeolite termodifikasi. Modifikasi ini juga meningkatkan waktu saturasi kolom sehingga kolom bisa dijalankan dengan efisien.


M.A. Reed, Proceedings of the IEEE. 87/4 (1999) 652.

M.C. Petty, M.R. Bryce, D. Bloor, Introduction to Molecular Electronics, Oxford, New York, 1995, p. 182.

A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29 (1974) 277.

Y.W. Li, J.H. Yao, Z.G. Zou, J.W. Yang, S.R. Le, Comput. Theor. Chem. 976 (2011) 135.

G. Chen, Y. Zhao, Tetrahedron. Lett. 47 (2006) 5069.

W. Xiang, D. Zhang, D.J. Montell. Mol. Biol. Cell, 27/1 (2016) 12.

A. Aviram, M.A. Ratner, Molecular Electronics: Science and Technology. 1998, New York: New York Academy of Sciences.

R. Frisenda, S. Tarkuç, E. Galán, M.L. Perrin, R. Eelkema, F.C. Grozema, H.S. van der Zant, Beilstein J. Nanotechnol. 6 (2015) 1558.

M. Tsutsui, M. Taniguchi, Sensors. 47 (2012) 7259.

J. Zeng, S.W. Edelman, G. Tharmarajah, D.W. Walker, S.D. Pletcher, L. Seroude, Proc. Natl. Acad. Sci. U.S.A., 102/34 (2005) 12083.

X. Huang, R. Huang, Z. Liao, Y. Pan, S. Gou, H. Wang, Eur. J. Med. Chem. 108 (2016) 381.

S.I. Kondo, M. Nagamine, S. Karasawa, M. Ishihara, M. Unno, Y. Yano, Tetrahedron. 67 (2011) 943.

S.R. Ghazali, K. Kubulat, M.I.N. Isa, A.S. Samsudin, W.M. Khairul, Mol. Cryst. Liq. Cryst. 604 (2014) 126.

W.M. Khairul, M.F. Yusof, R. Rahamathullah, A.I. Daud, S.M. Jasman, M.F.A. Hasan, H. Salleh, M.G. Tay, Int. J. Electrochem. Sci. 8 (2013) 8175.

A.I. Daud, W.M. Khairul, H.M. Zuki, K. Kubulat, J. Mol. Struct. 1093 (2015) 172.

W.M. Khairul, M.F. Abu Hasan, A.I. Daud, H.M. Zuki, K. Kubulat, M.A. Kadir, Malaysian. J. Analytical. Sci. 20 (2016) 73.

S. Zhu, Z. An, X. Chen, P. Chen, Q. Liu, Dyes. Pigments. 116 (2015) 146.

C.S. Shantaram, D.S. Vardhan, R. Suhas, M.B. Sridhara, D.C. Gowda, Eur. J. Med. Chem. 60 (2013) 325.

E.M. Preiß, T. Rogge, A. Krauß, H. Seidel, Sensor. Actuat. B-Chem. 236 (2016) 865.

J. Du, J. Wu, R. Zhao, H. Yao, T. Asefa, J. Li, Mater. Today: Proceedings. 3 (2016) 345.

B. Skariah, J. Naduvath, B. Thomas, Ceram. Int. 42 (2016) 7490.

K. Colladet, S. Fourier, T.J. Cleij, L. Lutsen, J. Gelan, D. Vanderzande, G. Janssen, Macromolecules. 40 (2007) 65.

A.I. Daud, W.M. Kahirul, H.M. Zuki, K. Kubulat, J. Sulf. Chem. 35 (2014) 691.

S.D. Chamberlain, A.R. Ingraffea, J.P. Sparks, Environ. Pollut. 218 (2016) 102.

C.J. Chiang, K.T. Tsai, Y.H. Lee, H.W. Lin, Y.L. Yang, C.C. Shih, K.C. Ho, Microelectron. Eng. 111 (2013) 409.

A.E. Stiegman, E. Graham, K.J. Perry, L.R. Khundkar, L.T. Cheng, J.W. Perry, J. Am. Chem. Soc. 113(1991) 7658.

N.R. Guha, D. Bhattacherjee, P. Das, Tetrahedron. Lett. 55 (2014) 2912.

A. Tadjarodi, F. Adhami, Y. Hanifehpour, M. Yazdi, Z. Moghaddamfard, G. Kickelbick. Polyhedron. 26 (2007) 4609

Y.F. Yuan, J.T. Wang, M.C. Gimeno, A. Laguna, P.G. Jones, Inor. Chim. Act. 324 (2001) 309.

J. Haribabu, G. R. Subhashree, S. Saranya, K. Gomathi, K. Karvembu, D. Gayathri, J. Mol. Struct. 1094 (2015), 281.

P. R. Chetana, B. S. Srinatha, M. N. Somashekar, J. Mol. Struct. 1106 (2016), 352.

R. M. Silverstein, F. X. Webster, D. Kiemle, Spectrometric Identification of Organic Compounds, 7th edition, Wiley Global Education. (2005).

A.M. Plutín, R. Marcelo, A. Alvarez, R. Ramos, E.E. Castellano, M.R. Cominetti, A.A. Batista, J. Inorg. Biochem. 134 (2014) 76.

A.F. Elhusseiny, A. Eldissouky, A.M. Al-Hamza, H.H. Hassan, J. Mol. Struct. 1100 (2015) 530.

A. Saeed, U. Shaheen, A. Hameed, S.H. Naqvi, J. Fluorine. Chem. 130 (2009) 1028.

J.C. Costa, R.J. Taveira, C.F. Lima, A. Mendes, L.M. Santos, Opt. Mater. 58 (2016) 51.

S.P. Vijayachamundeeswari, B.Y. Narayana, S.J. Pradeepa, N. Sundaraganesan, J. Mol. Struct. 1099 (2015) 633.

S.A. Bhat, S. Ahmad, J. Mol. Struct. 1099 (2015) 453.

W.M. Khairul, M.I.N. Isa, A.S. Samsudin, H.K. Adli, S.R. Ghazali, B. Mater. Sci. 37 (2014) 357

G. Gilli, P. Gilli, The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory, vol. 23, Oxford University Press, 2009, p.336.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.