•  
  •  
 

Abstract

Measurements of residual stress on the 57Fe25Cr15Ni steel plate with no-filler TIG-welding process were carried out. This work was conducted to determine the nature of weld ability in synthesized steel. The bulks were formed in a dimension of 30x20x7 mm3 to ease data retrieval. Results show that the largest residual stress occurred in the weld metal area, amounting to 82.40 MPa with lattice stretching of 0.18%. Conversely, the values decreased to 65.92 MPa and a stretch of 0.14% in the HAZ area. This residual stress is a tensile stress that can reduce the mechanical strength of the material since it adds to the applied loads. This was confirmed by microstructure observations. The carbon content was very high in the dark lines. Weaken materials usually start from this side and could initiate the intergranular cracks that rapidly migrate among its grain boundaries.

Bahasa Abstract

Pengukuran Tegangan Sisa pada Sambungan Las-TIG Bahan Struktur Baja Austenitik 57Fe15Cr25Ni Menggunakan Teknik Difraksi Sinar-X. Pengukuran tegangan sisa pada pelat baja 57Fe15Cr25Ni akibat proses pengelasan TIG tanpa filler telah dilakukan. Pekerjaan ini dilakukan untuk mengetahui sifat mampu las dari bahan pelat baja. Bahan ‘bulk’ dibentuk plat dengan dimensi 30x20x7 mm3 untuk memudahkan pengambilan data. Hasil penelitian menunjukkan bahwa tegangan sisa terbesar terjadi di daerah pusat las, sekitar 82,40 MPa dengan kisi peregangan 0,18% dan turun pada sekitar 65,92 MPa dengan regangan sebesar 0,14% di daerah HAZ. Tegangan sisa ini adalah tegangan tarik yang dapat mengurangi kekuatan mekanik material karena mampu menambah beban terpakai. Hal ini ditegaskan dengan pengamatan mikrostruktur. Kandungan karbon sangat tinggi di garis hitam. Pelemahan bahan biasanya dimulai dari sisi ini dan bisa mengawali retakan intergranular, yang dengan cepat dapat bermigrasi di antara batas butirnya.

References

  1. A.K. Jahja, N. Effendi, M.R. Muslich, J. Sci. Mater. Indones., 13/1 (2011) 34.
  2. N. Effendi, A.K. Jahja, Bandriana, W.A. Adi, Sci. J. Nucl. Fuel. Cycle. 18/1 (2012) 48.
  3. N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des., 35 (2012) 572.
  4. F. Hadjoui, M. Benachour, M. Benguediab, Mater. Sci. Appl., 3 (2012) 596.
  5. Parikin, Bandriyana, I. Wahyono, A.H. Ismoyo, Atom. Indones. J., 39/2 (2013) 65.
  6. T.K. Mandal, Mater. Sci. Poland., 33/1 (2015) 18.
  7. W. Wu, Z.W. Liu, J.J. Hua, Y. Zeng, Y.S. Li, J. Test. Eval., 40/3 (2012) 496.
  8. T.H. Priyanto, N. Effendi, Parikin, Adv. Mater. Res., 1123 (2015) 104.
  9. Parikin, T.H. Priyanto, A.H. Ismoyo, M. Dani, J. Mater. Sci. Indones., 17/1 (2015) 1-8 (in Indonesian).
  10. Parikin, N. Effendi, H. Mugihardjo, A.H. Ismoyo, J. Ilmiah. Daur. Bahan. Bakar. Nuklir., 20/1 (2014) 33 (in Indonesian).
  11. W. Zhang, J. Lu, K. Luo, Metals., 6/6 (2016) 1.
  12. A.K. Lisiecka, E.K. Ozgowicz, J. Ach. Mater. Manufact.
  13. Eng. JAMME, 44/2 (2011) 148.
  14. G.B. Marquis, Z. Barsoum, Procedia. Eng., 66 (2013) 98.
  15. H. Eisazadeh, J. Bunn, H.E. Coules, A. Achuthan, J. Goldak, D.K. Aidun, Welding Res., Welding J., 95 (2016) 111.
  16. S. Murugan, S.K. Rai, P.V. Kumar, T. Jayakumar, B. Raj, M.S.C. Bose, Int. J. Press. Vessels. Pip., 78 (2001) 307.
  17. A. Mehmanparast, O. Adedipe, F. Brennan, A. Chahardehi, Integrità. Strutturale., 35 (2016) 125. DOI: 10.3221/IGF-ESIS.35.15.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.