•  
  •  
 

Abstract

Lithium bis (oxalate) borate or LiBOB compound has captured interest of researchers, because it is potentially viable to be used as electrolyte salt in lithium-ion battery system. This compound is easy to synthesize and considered to be more environmentally friendly compared to conventional electrolyte salt because LiBOB does not contain halogen element. This research focused on the synthesis of LiBOB fine powder, which main purpose is improving LiBOB salt solubility in liquid electrolyte solution. This will aid the ion transfer between electrodes which in turn will increase the electrolyte performance. Solid state reaction was employed in this experiment. Synthesis of LiBOB compound was performed by reacting oxalic acid dihydrate, lithium hydroxide monohydrate, and boric acid. The resulting powder was then processed into fine powder using ball milling technique with varying milling time (0, 6, 10, and 13) hour. Microstructure of the sample was then analyzed to obtain information regarding phase formation, functional groups, grain surface morphology, surface area, pore volume, solubility, and ionic conductivity. The analysis shown that LiBOB and LiBOB hydrate phase was formed during the reaction, there was no changed in existing phase during milling process, crystallinity index was shifted to lower value but there was no difference in functional groups. Highest value in surface area was found to be 83.11 m2/g, with pore volume of 1.21311e+02 A at 10 hours milling. Smaller powder size resulted in higher solubility, unfortunately the ionic conductivity was found to be decreased.

Bahasa Abstract

Sintes Serbuk Halus LiBOB untuk Meningkatkan Kelarutannya. Senyawa Litium Bis (Oksalato) Borat atau LiBOB mulai banyak diteliti, karena dapat dipergunakan untuk elektrolit pada baterai lithium. Senyawa tersebut mudah disintesis dan dianggap lebih ramah lingkungan dari pada material elektrolit lainnya karena tidak mengandung unsur halogen. Pada penelitian ini dilakukan pembuatan serbuk halus LiBOB. Pembuatan serbuk halus LiBOB bertujuan untuk memudahkan kelarutan LiBOB pada pembuatan elektrolit cair dan memperlancar pergerakan ion dari anoda menuju katoda sehingga meningkatkan kinerja elektrolit. Metode yang digunakan adalah reaksi padat-padat. Sintesis senyawa LiBOB, melalui reaksi antara asam oksalat dihidrat, lithium hidroksida monohidrat dengan asam borat. Serbuk yang dihasilkan kemudian dihaluskan dengan teknik ball milling dengan waktu yang bervariasi(0, 6, 10 dan 13) jam. Selanjutnya sampel dianalisis struktur mikro meliputi fasa yang terbentuk, ikatan gugus, morfologi permukaan butir, luas permukaan butiran, volume pori, waktu kelarutan dan konduktivitas listrik. Dari analisa tersebut didapatkan hasil fasa yang terbentuk adalah LiBOB dan LiBOB hidrat, tidak terjadi perubahan fasa selama proses milling, indeks kristalinitas perubahan menjadi lebih kecil dan tidak terjadi perubahan ikatan gugus karena pengaruh proses milling. Luas permukaan butiran terbesar didapat 83,111 m2/g, dengan volum pori 1,21311e+02 A pada milling 10 jam. Semakin halus butiran waktu larut menjadi lebih cepat, tetapi memberikan konduktivitas listrik yang menurun.

References

  1. L. Yang, M.M. Furczon, et al., Power Sources, 195 (2010) 1698.
  2. T.B. Reddy, D. Linden, (Eds.), Linden’s Handbook of Batteries, 4th ed., McGraw-Hill, New York, 2011, p. 1456.
  3. H. Tao, Z. Feng, H. Liu, X. Kan, P Chen, The Open Material Sci. J 5 (2011)204.
  4. F. Azeez, P.S. Fedkiw. J. Power Sources 195 (2010) 7627. doi:10.1016/j.jpowsour.2010.06.021.
  5. U. Lischka, U. Wietelmann, M. Wegner, Paten Jerman No. DE19829030 C1.
  6. K. Xu, S. Zhang, T.R. Jow, Electrochem. Solid-State Lett. 8 (2005) A 365.
  7. X. Cui, H. Zhang, S. Li, Ionics. 20. (2014) 789
  8. B.T. Yu, W.-H. Qiu, F.-S. Li, L. Cheng, J. Power Sources. 166 (2007) 499.
  9. P.G. Bruce, B. Scrosati, J.M. Tarascon, Ange Wandte Chemie International Edition, 47 (2008) 2930.
  10. M. Armand J.-M. Tarascon, Nature, 451 (2008) 652.
  11. K. Xu, Chem. Reviews, 104 (2004) 433.
  12. P. Balaya, A.J Bhattacharyya, J. Jamnik, Y.F. Zhukovskii, E.A. Kotomin, J. Maier, J. Power Sources, 159 (2006) 171.
  13. D. Zhang, et al., Electrochimica Acta 55 (2010) 2653.
  14. B.T. Yu, W.H. Qiu, F.-S. Li, G.-X. Xu, Electr. Solid-State Lett. 9/1 (2006) A1
  15. E.M. Wigayati, T. Lestariningsih, A. Subhan, C.R. Ratri, I. Purawiardi, Ionics, Published online 4 Septembre 2015, DOI 10.1007/s11581-015-1531-y.
  16. M.H.A. Rahaman, M.U. Khandaker, Z.R. Khan, M.Z. Kufian, I.S.M. Noor, A.K. Arof, Phys. Chem. Chem. Phys, 16. (2014) 11527.
  17. Aravindan, P. Vickraman, Ionics. 13 (2007) 277.
  18. E.M. Wigayati, T. Lestariningsih, F. Rohman, C.R. Ratri, I. Purawiardi, Indonesian Chem. 15/3 (2015) 242.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.