•  
  •  
 

Abstract

Development of fuel cladding and structural materials in Pb-Bi environment, especially at high temperature, is a critical issue for the deployment of LFR (Lead alloy-cooled Fast Reactor) and ADS (Accelerator Driven Transmutation System). This is because of the corrosive characteristic of Pb-Bi to metals as constituent materials of fuel cladding and structural of the reactors. Corrosion test of a high-chromium austenitic stainless steel i.e. SS316Ti in molten Pb-Bi at 550 ºC has been carried out for about 300 hours continuously. The characterization using SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy) showed that an iron oxide as the outer layer and a chromium oxide as the inner layer on the surface of the specimen were formed which in general have protected the steel specimen from corrosion and dissolution attack of Pb-Bi. However, small amount of Pb could penetrate into the iron oxide layer through ultra-narrow channels. Atomic Force Microscopy (AFM) with Electrostatic Force Microscopy (EFM) mode was employed to investigate the phenomena of the nano-channels early formation. The results of the nano-scale investigation showed clearly the formation of the channels at the early time of corrosion as the way of Pb to penetrate into iron oxide outer layer.

Bahasa Abstract

Investigasi Pembentukan Awal Saluran-Nano pada Baja SS316Ti Setelah Pembenaman di Cairan Pb-Bi Pengembangan material kelongsong bahan bakar dan struktur reaktor nuklir di lingkungan Pb-Bi terutama pada temperatur tinggi merupakan isu penting bagi penyiapan LFR (reaktor cepat berpendingin paduan timbal) dan ADS (sistem transmutasi yang digerakkan oleh akselerator). Hal ini karena karakteristik korosif Pb-Bi pada logam bahan penyusun dari kelongsong bahan bakar dan struktur reaktor. Pengujian korosi baja austenitik kromium tinggi yaitu SS316Ti dalam cairan Pb-Bi pada temperatur 550 ºC telah dilakukan selama sekitar 300 jam secara kontinu. Hasil analisis SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy) menunjukkan bahwa oksida besi sebagai lapisan luar dan oksida kromium sebagai lapisan dalam pada permukaan spesimen telah terbentuk yang secara umum melindungi spesimen baja dari korosi dan serangan disolusi Pb-Bi. Namun, sejumlah kecil Pb dapat menembus ke dalam lapisan oksida besi melalui saluran ultra-celah sempit. Atomic Force Microscopy (AFM) dengan mode EFM (Electrostatic Force Microscopy) telah digunakan untuk menyelidiki fenomena pembentukan awal saluran tersebut. Hasil penyelidikan skala nano menunjukkan dengan jelas pembentukan saluran tersebut pada saat awal proses korosi yang menjadi jalan bagi Pb untuk menembus lapisan luar oksida besi.

References

U.S. DOE, A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, Washington, D.C., 2002.

International Energy Agency (IAEA), IAEATECDOC 1348, Vienna, Austria, 2003, p.232.

S. Meigo, J. Nucl Mater 450/1–3 (2014) 8.

A.K. Rivai, Z. Su’ud, F. Aziz, J. Indonesian Physics Contribution – KFI 13/4 (2002) 214.

A.K. Rivai, M. Takahashi, J. Power Energ. Systems 1/2 (2007) 134.

A.K. Rivai, M. Takahashi, Prog. Nucle Energy 50 (2008) 560.

A.K. Rivai, M. Takahashi, J. Nucl Mater 398 (2010) 146.

A.K. Rivai, S. Saito, M. Tezuka, C. Kato, K. Kikuchi, J. Nucl Mater. 431 (2012) 97.

K. Kikuchi, A.K. Rivai, S. Saito, A. M. Bolind, A. Kogure, J. Nucl Mater. 431 (2012) 120.

A. Weisenburger, C. Schroer, A. Jianu, A. Heinzel, J. Konys, et al., J. Nucl. Mater. 415 (2011) 260.

C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, J. Nucl. Mater. 418/1–3 (2011) 8.

A.K. Rivai, A. Heinzel, F. Lang, Proceeding of Symposium and Scientific Presentation – Basic Research of Nuclear Science and Technology (Seminar PPI PTAPB-BATAN, in Indonesia) 2012, p. 57.

Y. Kurata, J. Nucl. Mater. 448/1–3 (2014) 239.

M. Roya, L. Martinelli, K. Ginestar, Jérôme Favergeon, Gérard Moulin, J. Nucl. Mater. 468 (2016) 153.

J. Liu, Z. Jiang, S. Tian, Q. Huang, Y. Liu, J. Nucl. Mater. 468 (2016) 299.

V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, J. Nucl. Mater. 468 (2016) 305.

A.J. Magielsen, M. Jong, T. Bakker, N.V. Luzginova, R.K. Mutnuru, D.J. Ketema, A.V. Fedorov, J. Nucl. Mater. 415/3 (2011) 311.

E. Yamaki, K. Ginestar, L. Martinelli, Corrosion Sci. 53 (2011) 3075.

L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, et al., Corrosion Sci. 50 (2008) 2523.

V. Engelko, G. Muellerd, A. Rusanov, V. Markov, K. Tkachenko, A. Weisenburger, et al., J. Nuclear Mater. 415/3 (2011) 270.

Y. Kurata, H. Yokota, T. Suzuki, J. Nucl. Mater. 424/1–3 (2012) 237.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.