•  
  •  
 

Abstract

In this study, progressive collapse potential of generic 3-, 8- and 12-storey RC moment frame buildings designed based on IBC-2006 code was investigated by performing non-linear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when the second floor column was suddenly removed. Then, the size of beams required to satisfy the failure criteria for progressive collapse was obtained by using the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA code.

Bahasa Abstract

Metode Desain Plastis untuk RC Rangka Pemikul Momen Bangunan terhadap Keruntuhan Progresif. Dalam penelitian ini, potensi keruntuhan progresif data bangkitan 3-, 8- dan 12-lantai bangunan rangka beton bertulang pemikul momen dirancang berdasarkan IBC-2006 diselidiki dengan melakukan analisis statis dan dinamis non-linear. Diamati bahwa struktur model memiliki potensi besar untuk runtuh secara progresif saat kolom lantai dua tiba-tiba dihilangkan. Kemudian, ukuran balok yang dibutuhkan untuk memenuhi kriteria kegagalan untuk keruntuhan progresif diperoleh dengan nmenggunakan metode kerja virtual; yaitu, menggunakan keseimbangan kerja eksternal yang disebabkan oleh beban gravitasi akibat hilangnya kolom dan kerja internal yang disebabkan oleh rotasi plastis balok. Berdasarkan hasil analisis dinamik nonlinear, struktur model yang hanya dirancang untuk beban normal menghasilkan potensi yang kuat untuk runtuh secara progresif, sedangkan struktur yang dirancang dengan konsep desain plastis untuk keruntuhan progresif memenuhi kriteria kegagalan yang direkomendasikan oleh kode GSA.

References

  1. M. Li, M. Sasani, J. Eng. Struct. 95 (2015) 71.
  2. G.R. Abdollahzadeh, H. Faghihmaleki, H. Esmaili, Alexandria, Eng. J. (2017). http://dx.doi.org/10.1016/j.aej. 2016.09.015.
  3. G.R. Abdollahzadeh, H. Faghihmaleki, Int. J. Dam. Mech. 0 (2017) 1. doi: 10.1177/1056789516651919.
  4. N.B.C.C, National Research Council of Canada, Ottawa, Canada, 1995.
  5. Eurocode 1, Actions on structures, European Committee for Standardization, Brussels, 2002.
  6. I.C.C. International Building Code, International Code Council, Falls Church, Virginia, 2006.
  7. ACI 318. Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI318R-02), American Concrete Institute, Farmington Hills, Michigan, 2002.
  8. ASCE7-05, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, New York, 2005.
  9. GSA, Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, The U.S. General Services Administration, 2003.
  10. Unified Facilities Criteria (UFC)-DoD, Design of Buildings to Resist Progressive Collapse, Department of Defense, USA, 2005.
  11. FEMA NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, Washington, D.C, 1997.
  12. M. Sasani, S. Sagiroglu, J. Struct. Eng. 134 (2008) 478.
  13. X. Lu, X. Lin, Y. Ma, Y. Li, L. Ye, the 14th World Conf. Earth. Eng. Beijing, China, 2008, p.12.
  14. J. Kim, J. Park, J. St. Comp. Struct. 8 (2008) 85.
  15. F. Fu, J. Construc. St. Research. 65 (2009) 1269.
  16. A.G. Vlassis, B.A. Izzuddin, A.Y. Elghazouli, D.A. Nethercot, J. Eng. Struct. 30 (2008) 1424.
  17. W. Yi, Q. He, Y. Xiao, S.K. Kunnath, ACI. Struct. J. 105 (2008) 4.
  18. FEMA, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Federal Emergency Management Agency, Washington, D.C., 2006.
  19. SeismoSoft, A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures, SeismoStruct, Version 6, http://www.seismosoft.com/, 2012.
  20. S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, Pac. Earth. Eng. Res. Cent. Berkeley, California, 2006.
  21. S. Faroughia, J. Lee, J. Buil. Eng. 2 (2015) 1.
  22. AISC Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois, 2005.
  23. H. Faghihmaleki, E.K. Najafi, A.H. Aini, Int. J. Struc. Integ. 8 (2017) 24.
  24. A. Khaloo, S. Nozhati, H. Masoomi, H. Faghihmaleki, J. Build. Eng. 7 (2016) 23.
  25. S.S.J. Moy, Plastic Methods for Steel and Concrete Structures, New Jersey, USA: Wiley, 1981, p.221.
  26. G.R. Abdollahzadeh, H. Faghihmaleki, Int. J. Earth. Struc. 12 (2017) 47.
  27. G.R. Abdollahzadeh, H. Faghihmaleki, Int. J. Struct. Eng. 7 (2016) 331.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.