•  
  •  
 

Abstract

Various technological approaches have been developed in order to help those people who are unfortunate enough to be afflicted with different types of paralysis which limit them in performing their daily life activities independently. One of the proposed technologies is the Brain-Computer Interface (BCI). The BCI system uses electroencephalography (EEG) which is generated by the subject’s mental activity as input, and converts it into commands. Some previous experiments have shown the capability of the BCI system to predict the movement intention before the actual movement is onset. Thus research has predicted the movement by discriminating between data in the “rest” condition, where there is no movement intention, with “pre-movement” condition, where movement intention is detected before actual movement occurs. This experiment, however, was done to analyze the system for which machine learning was applied to data obtained in a continuous time interval, between 3 seconds before the movement was detected until 1 second after the actual movement was onset. This experiment shows that the system can discriminate the “pre-movement” condition and “rest” condition by using the EEG signal in 7-30 Hz where the Mu and Beta rhythm can be discovered with an average True Positive Rate (TPR) value of 0.64 ± 0.11 and an average False Positive Rate (FPR) of 0.17 ± 0.08. This experiment also shows that by using EEG signals obtained nearing the movement onset, the system has higher TPR or a detection rate in predicting the movement intention.

Bahasa Abstract

Analisis Prediksi Gerakan Tangan menggunakan Sinyal Elektroensefalografi. Berbagai pendekatan teknologi telah dikembangkan untuk membantu mereka yang menderita kelumpuhan dalam melakukan aktivitas kesehariannya secara mandiri. Salah satu teknologi tersebut adalah Brain-Computer Interface (BCI). Sistem BCI menggunakan elektroensefalografi (EEG) yang dihasilkan dari aktivitas mental seorang subjek sebagai masukan, dan mengubahnya menjadi perintah. Beberapa percobaan sebelumnya telah menunjukkan kemampuan sistem BCI untuk memprediksi gerakan sebelum gerakan tubuh aktual terjadi. Penelitian tersebut memprediksi gerakan yang akan terjadi dengan membedakan data pada kondisi rest, di mana tidak ada intensi gerakan, dengan kondisi pre-movement, di mana terdapat intensi gerakan sebelum gerakan aktual terjadi. Penelitian ini dilakukan untuk melakukan analisis sistem yang dihasilkan dari pembelajaran, yang kemudian diterapkan pada data dengan interval waktu kontinu, antara 3 detik sebelum gerakan terdeteksi sampai 1 detik setelah gerakan sebenarnya terjadi. Hasil percobaan menunjukkan bahwa sistem dapat membedakan kondisi premovement dan kondisi rest dengan menggunakan sinyal EEG pada frekuensi 7-30 Hz di mana letak Mu dan ritme Beta dengan nilai rerata true positive rate (TPR) sebesar 0.64 ± 0.11 dan rerata nilai false positive rate (FPR) sebesar 0.17 ± 0.08. Hasil percobaan juga mampu menunjukkan bahwa penggunaan sinyal EEG yang dekat dengan terjadinya gerakan, membuat sistem dapat mendeteksi intensi gerakan dengan nilai TPR atau tingkat deteksi gerakan semakin tinggi.

References

  1. E. Widmainer, H. Raff, K. Strang, Vander's Human Physiology: The Mechanisms of Body Function, 8th ed., McGraw-Hill, UK, 2001, p.6.
  2. G. Garcia, Thesis, Direct Brain-Computer Communication Trough Scalp Recorded EEG Signal, Faculté des sciences et techniques de l'ingénieur, Institut de traitement des signaux, Lausanne, Switzerland, 2004.
  3. D.C. Hammond, An Introduction to Neurofeedback, J Neurotheraphy, University of Utah School of Medicine, 2005.
  4. G. Schalk, J. Mellinger, User Tutorial: Introduction to The Mu Rhythm, http://www.bci2000.org, 2008.
  5. E. Lew, R. Chavarriaga H. Zhang, M. Seeck, J.R Millan, Proceedings of 34th Annual International Conference of EMBS, IEEE, San Diego, California, USA, 2012, p.3280.
  6. U. Maoz, S. Ye, I.B. Ross, A.N. Mamelak, C. Koch, Proceedings of The 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, USA, 2013, p.872.
  7. G. Pirez, U. Nunes, M. Castelo-Branco, Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, Netherlands, 2007, p.569.
  8. D. Planelles, E. Hortal, A. Costa, A. Ubeda, E. Ianez, J.M. Azorin, J Sensors, 14/10 (2014) 18172.
  9. Anon., Emotiv EPOC and TestBench Specifications, www.emotiv.com, 2014.
  10. H. Shibasaki, M. Hallett, J Clin Neurophysiol. 117 (2006) 2341.
  11. N.J. Huan, R. Palaniappan, Brain Computer Interface Design using Mental Task Classification, http://csee.essex.ac.uk/staff/palaniappan/Brain%20Computer%20InterfaceDesign%20Using%20Mental%20Task%20Classification.pdf.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.