•  
  •  
 

Abstract

Lignin from lignocellulosic biomass is a potential biopolymer for wood adhesive. The aims of this study were to characterize lignin isolated from the black liquor of oil palm empty fruit bunch fiber pretreated with steam explosion in alkaline conditions and to examine the bond quality of aqueous polymer isocyanate (API) adhesive prepared from lignin, natural rubber latex (NRL), and polyvinyl alcohol (PVA) as base polymers with isocyanate crosslinkers. Lignin was precipitated from the black liquor by adding hydrochloric acid; then the precipitate was separated by filtration, thoroughly washed with water up to pH 2 and pH 5, and dried. The isolated lignin was characterized by ultimate analysis, UV spectroscopy, FT-IR spectroscopy, and thermal analysis. Three-layer plywood samples were prepared, and the bond strengths of the plywood samples were determined in dry conditions and after cyclic boiling. The lignin isolates with different pH values did not have significantly different chemical and thermal properties. Both lignin isolates had similar C, H, and O contents, identical functional groups in the FTIR spectra, similar absorption in the UV spectra, and high decomposition temperatures. The base polymers composition that could produce API adhesive for exterior applications was NRL/PVA/lignin (4/4/2). The use of more lignin in the adhesive formulation decreased the bond strength of the plywood.

Bahasa Abstract

Sifat lignin dari tandan kosong kelapa sawit dan aplikasinya sebagai perekat kayu lapis. Lignin dari biomassa lignoselulosa merupakan biopolimer potensial untuk perekat kayu. Tujuan penelitian ini adalah untuk mengenali sifat lignin yang diisolasi dari lindi hitam sisa pretreatment steam explosion alkalis serat tandan kosong kelapa sawit, dan untuk menguji daya rekat perekat aqueous polymer isocyanatae (API) yang dibuat dari lignin, lateks karet alam (LKA) dan polivinil alkohol (PVA) sebagai polimer dasar dengan senyawa isosianat sebagai crosslinker. Lignin diendapkan dari lindi hitam dengan menambahkan asam klorida, setelah itu endapan dipisahkan dari larutan dengan penyaringan, dicuci dengan air sampai pH 2 dan pH 5, dan dikeringkan. Isolat lignin dikarakterisasi dengan analisis ultimat, spektroskopi UV, spektroskopi FT-IR, dan analisis termal. Kayu lapis (tiga lapisan) dibuat dari vinir kayu meranti (depan dan belakang) dan sengon (tengah) dan keteguhan rekatnya diuji pada kondisi kering dan setelah melalui perebusan berulang. Isolat lignin dengan pH yang berbeda tidak memberikan pengaruh nyata terhadap sifat kimia dan sifat termalnya. Kedua isolat lignin mempunyai kadar C, H, dan O yang mirip, gugus fungsi yang identik pada spektra FTIR, serapan yang mirip pada spektra UV, dan suhu dekomposisi yang tinggi. Komposisi polimer dasar yang dapat menghasilkan perekat API untuk aplikasi eksterior adalah LKA/PVA/lignin (4/4/2). Penggunaan lignin yang lebih banyak menurunkan keteguhan rekat kayu lapis.

References

  1. T. Sellers, Wood Tecnol. 127/3 (2000) 40.
  2. K. Taki, H. Yoshida, Y. Yamagishi, T. Inoue, Proceedings of the Adhesives and Bonded Wood Symp. 4735/FPS, 1994, p.307
  3. K. Taki, Adhesive Technology and Bonded Tropical Wood Products Extension, Series No. 96, 1998, p.95.
  4. H. Hongjiu, L. Hong, Z. Junjin, L. Jie, J. Adhesion. 82/1 (2006) 93.
  5. A.A. Marra, Technology of Wood Bonding: Principles in Practice, Van Nostrand Reinhold Company, New York, 1992, p.72.
  6. N.E. Mansouri, J. Salvado, Ind. Crop. Prod. 24 (2006) 8.
  7. N. Brosse, M.N.M. Ibrahim, A.A. Rahim, ISRN Materials Sci. 2011 (2011) 1, 461482, doi: 10.5402/2011/461482.
  8. K. Minu, K.K. Jiby, V.V.N. Kishore, Biomass Bioenerg. 39 (2012) 210.
  9. W.O.S. Doherty, P. Mousavioun, C.M. Fellows, Ind. Crop. Prod. 33 (2011) 259.
  10. L.W. Zhao, B.F. Griggs, C.L. Chen, J.S. Gratzl, J. Wood Chem. Technol. 14/1 (1994) 127.
  11. M. Olivares, H. Aceituno, G. Neiman, E. Rivera, T. Sellers Jr., Forest Prod. J. 45/1 (1995) 63.
  12. M.N.M. Ibrahim, A.M. Ghani, N. Nen, Malay. J. Anal. Sci. 11/1 (2007) 213.
  13. R.K. Gothwal, M.K. Mohan, P. Ghosh, J. Sci. Ind. Res. India. 69 (2010) 390.
  14. A. Santoso, S. Ruhendi, Y.S. Hadi, S.S. Achmadi, Jurnal Teknologi Hasil Hutan. 14/2 (2001) 7 (in Indonesian).
  15. A. Santoso, Dissertation, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Indonesia, 2003 (in Indonesian).
  16. I.M. Sulastiningsih, A. Santoso, Prosiding Seminar Nasional IV, 2001, p.iv-182 (in Indonesian).
  17. A. Santoso, Prosiding Simposium Nasional Polimer V, 2005, p.155 (in Indonesian).
  18. S.M. Kambanis, A. Berchem, D. Gregoire, J. Rybicky, U.S. Patent No. 4537941, 27 Aug. 1985.
  19. V. Sudan, U.S. Patent No. CA2399171 C, 12 Oct. 2010.
  20. A. Stephanou, A. Pizzi, Holzforschung. 47 (1993) 439.
  21. D. Templeton, T. Ehrman, National Renewable Energy Laboratory LAP 003, U.S. Department of Energy, Washington, DC, 1995, p.13.
  22. T. Ehrman, National Renewable Energy Laboratory LAP 004, U.S. Department of Energy, Washington, DC, 1996, p.7.
  23. D.R. Robert, B. Michel, G. Gellerstedt, L. Lindfors, J. Wood Chem. Technol. 4 (1984) 239.
  24. Anon., Japan Agricultural Standard for Plywood, Ministry of Agriculture, Forestry and Fisheries, Japan, 2008, p.78.
  25. M.N.M. Ibrahim, N. Zakaria, C.S. Sipaut, O. Sulaiman, R. Hashim, Carbohyd. Polym. 86 (2011) 112.
  26. X.B. Zhao, L. Dai, D. Liu, J. Appl. Polym. Sci. 114 (2009) 1295.
  27. D. Fengel, G. Wegener, Kayu: Kimia, Ultrastruktur, Reaksi-reaksi, Gadjah Mada University Press, Yogyakarta, 1995, p.183 (in Indonesian).
  28. R.C. Sun, J. Tomkinson, G.L. Jones, Polym. Degrad. Stabil. 68 (2000) 111.
  29. N.E. Mansouri, Q. Yuan, F. Huang, BioResources 6/3 (2011) 2647.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.