•  
  •  
 

Abstract

The use of vegetable oils on replacing petroleum has attracted attention of many researchers. The chemical structure of vegetable oils are different from petrochemicals, so the structure of soybean oil has to be chemically modified through its unsaturated fatty acid chain in triglyceride. A two step process was conducted for the preparation of soy-polyol in designated temperatures; 50 °C, 60 °C, and 70 °C. Ethylene glycol (EG) as co-reagent was taking part in soy-polyol synthesis, and the soy-polyol was used as a sole polyol for polyurethane synthesis. Referred to the previous study, the existence of EG in polyurethane synthesis can improved physical properties of polyurethane foam. The aim of this research is using soy-derived polyol for petro-polyol replacement aligned with drop-off of petro-derived reagent; EG. One step process was applied for the foam synthesis. The ingredients for foam synthesis; soy-polyol, Toluene diisocyanate (TDI): a mixture of 2.4 and 2.6 isomers in ratio of 80:20 (TDI T-80), surfactant, and distilled water. The synergize of stoichiometry ratio of co-reagent EG to soy-epoxide with best temperature, with the absence of EG in polyurethane formula can produce an ultimate property of polyurethane foam.

Bahasa Abstract

Sintesis dan Karakterisasi Busa Poliuretan Berbasis Kedelai Menggunakan Etilen Glikol dalam Poliol. Penggunaan minyak sayur sebagai pengganti minyak bumi menjadi perhatian banyak peneliti. Struktur kimia minyak sayur berbeda dari minyak bumi, untuk itu diperlukan modifikasi secara kimia rantai tak jenuh asam lemak rantai trigliserida dalam minyak kedelai. Proses dua tahap dilakukan untuk membuat poliol kedelai menggunakan suhu yang telah ditetapkan; 50 °C, 60 °C, dan 70 °C. Etilen Glikol (EG) sebagai co-reagen mengambil bagian dalam sintesis poliol kedelai, dan poliol kedelai menjadi poliol tunggal dalam sintesis poliuretan. Berdasarkan hasil penelitian terdahulu, ditemukan bahwa penggunaan EG pada sintesis poliol dapat memperbaiki sifat fisika busa poliuretan. Tujuan penelitian ini adalah menggunakan poliol kedelai menggantikan poliol minyak bumi dan sejalan dengan menghilangkan reagen yang terbuat dari minyak bumi; EG. Proses satu tahap dilakukan pada sintesis busa. Bahan yang digunakan untuk sintesis busa adalah poliol kedelai, Toluen diisosianat (TDI) adalah campuran isomer 2,4 dan 2,6 pada perbandingan 80:20 (TDI T-80), surfaktan, dan air suling. Sinergi perbandingan stoikiometri antara co-reagen EG dengan epoksida kedelai pada suhu terbaik, meski tanpa penambahan EG pada pembuatan poliuretan menghasilkan sifat akhir busa poliuretan.

References

  1. Anon., MDI, TDI and Polyurethane Market by Type, Applications, Prices, Regulations, Trends and Global Forecasts 2011-2016, Markets and Markets Report, Code CH 1596, Dallas, TX, 2011, p.492.
  2. Anon., Foamed Plastics (polyurethane): A Global Strategic Business Report, Code MCP-2069, Global Industry Analysis, Inc., U.S., 2012, p.416.
  3. Y. Zhang, D.J. Hourston, J. Appl. Polym Sci. 69 (1988) 271.
  4. T.K. Roy, V.M. Mannari, D.A. Raval, Sci. Ind. Res. 56 (1997) 159.
  5. S. Ahmad, S.M. Ashraf, E. Sharmin, F. Zafar, A. Hasnat, Prog. Cryst. Growth Charact. Mater. 45/1 (2012) 83.
  6. Z.S. Petrovic, I. Javni, A. Guo, Proc. Polyurethanes EXPO ’98, SPI, Dallas, TX, 1998, p.559.
  7. C.K. Lyon, V.H. Garret, E.N. Frankel, J. Am. Oil. Chem. Soc. 51 (1974) 331.
  8. J. John, M. Bhattacharya, R.B. Turner, J. Appl. Polym. Sci. 86 (2002) 3097.
  9. Z.S. Petrovic, A. Guo, I. Javni, US Patent 6, Pittsburg St. Univ. 107 (2000) 433.
  10. A. Guo, Y. Cho, Z.S. Petrovic J. Polymer Sci. Polym. Chem. 38 (2000) 3900.
  11. A. Guo, D. Demydov, W. Zhang, Z.S. Petrovic, J. Polym. Env. 10 (2000) 49.
  12. M. Thirumal, J. Appl. Plymr. Sci. 108 (2008) 1810.
  13. Z. Lozada-Rodriguez, Dissertation, Faculty of the Graduate School, University of Missouri, Columbia, 1999.
  14. A. Zlatanic, C. Lava, W. Zhang, Z.S. Petrovic, J. Polym. Sci. Part B 42 (2004) 809.
  15. A. Guo, Y. Cho, Z.S. Petrovic, J. Polym. Sci. Polym. Chem. 38 (2000) 3900.
  16. Z.S. Petrovic, A. Guo, W. Zhang, J. Polym. Sci. Polym. Chem. 38 (2000) 4062.
  17. Z.S. Petrovic, W. Zhang, I. Javni, J. Polym. Env. 10 (2012) 5.
  18. Z.S. Petrovic, Polym. Rev. 48 (2008) 109.
  19. F.E. Firdaus, Eng. Technol. 57 (2011) 191.
  20. H. Pawlik, A. Prociak, J. Polym. Env, 20 (2012) 438.
  21. L.L. Monteavaro, E.O. Da Silva, A.P.O. Costa, D. Samios, A.E. Gerbase, C.L. Petzhold, J. Am. Oil Chemist’s Soc. (JAOCS), 82/5 (2005) 365.
  22. C.T. Yuan, Dissertation, Faculty of the Graduate School, University of Missouri, Columbia, 2008.
  23. A. Prociak, J. Cell. Plast. 48/6 (2012) 489.
  24. R. Mungro, J. Am. Oil Chem. Soc. 85 (2008) 887.
  25. L.A. Rios, Dissertation, Faculty of Mathematics, Informatics and Sciences, RWTH, Aachen, Germany, 2003.
  26. F.E. Firdaus, World Acad. Sci. Eng. Technol. 6 (2012) 78.
  27. M. Szycher, Szycher’s Handbook of Polyurethanes, CRC Press, Boca Raton, 1999, p.1144.
  28. B.R. Vaughan, G.L. Wilkes, D.V. Dunis, C. McLaughin, J. Appl. Polym. Sci. 119 (2011) 2698.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.