•  
  •  
 

Abstract

We study nanowire silicon pin and pn-junctions at room and low temperature. Photovoltaic effects are observed for both devices at room temperature. At low temperature, nanowire pn-junction devices show their ability to detect single photon. This ability was not been observed for pin devices. Phosphorus-boron dopant cluster in the depletion region is considered to have the main role for single-photon detection capability. Fundamental mechanism of dopant-based single-photon detection in nanowire pn-junction is described in details.

Bahasa Abstract

Pengamatan terhadap Efek Fotovoltaik dan Deteksi Foton Tunggal pada Simpangan-pn Silikon Kawat Nano. Kami mempelajari pin dan simpangan-pn silikon pada suhu ruangan dan suhu rendah. Efek fotovoltaik diamati pada kedua komponen pada suhu ruangan. Pada suhu rendah, komponen simpangan-pn kawat nano menunjukkan kemampuan untuk mendeteksi adanya foton tunggal. Kemampuan ini tidak ditemukan pada komponen pin. Kluster dopan boron berfosfor pada daerah deplesi dianggap memainkan peranan utama dalam kemampuannya untuk mendeteksi foton. Mekanisme dasar dari deteksi foton tunggal berbasis dopant pada simpangan-pn kawat nano digambarkan secara mendetail.

References

  1. T. Hiramoto, H. Majima, M. Saitoh, Mater. Sci.Eng. B. 101/1–3 (2003) 24.
  2. A. Asenov, IEEE T. Electron. Dev. 45/12 (1998) 2505.
  3. T. Shinada, S. Okamoto, T. Kobayashi, I. Ohdomari, Nature. 437/7062 (2005) 1128.
  4. M. Hori, T. Shinada, Y. Ono, A. Komatsubara, K. Kumagai, T. Tanii, T. Endoh, I. Ohdomari, Appl. Phys. Lett. 99/6 (2011) 062103.
  5. H. Sellier, G. P. Lansbergen, J. Caro, N. Collaert, I. Ferain, M. Jurczak, S. Biesemans, S. Rogge, Phys. Rev. Lett. 97/20 (2006) 206805.
  6. G.P. Lansbergen, R. Rahman, C.J. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L.C.L. Hollenberg, S. Rogge, Nat. Phys. 4/8 (2008) 656.
  7. Y. Ono, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, H. Inokawa, Y. Takahashi, Appl. Phys. Lett. 90/10 (2007) 102106.
  8. M.A.H. Khalafalla, Y. Ono, J. Noborisaka, G.P. Lansbergen, A. Fujiwara, J. Appl. Phys. 110/1 (2011) 014512.
  9. P.M. Koenraad,M.E. Flatté, Nature Materials. 10/2 (2011) 91.
  10. D. Moraru, A. Udhiarto, M. Anwar, R. Nowak, R. Jablonski, E. Hamid, J.C. Tarido, T. Mizuno, M. Tabe, Nanoscale Res. Lett. 6 (2011) 479.
  11. H.-S. Goan, Quantum Information Science - Proceedings of the 1st Asia-Pacific Conference, 393/6681 (2005) 27.
  12. L. Hollenberg, A. Dzurak, C. Wellard, A. Hamilton, D. Reilly, G. Milburn, R. Clark, Phys. Rev. B. 69/11 (2004) 113301.
  13. D. Moraru, Y. Ono, H. Inokawa, M. Tabe, Phys. Rev. B. 76/7 (2007) 075332.
  14. D. Moraru, M. Ligowski, K. Yokoi, T. Mizuno, M. Tabe, Appl. Phys. Express. 2 (2009) 071201.
  15. M. Tabe, D. Moraru, M. Ligowski, M. Anwar, R. Jablonski, Y. Ono, T. Mizuno, Phys. Rev. Lett. 105/1 (2010) 016803.
  16. E. Hamid, D. Moraru, J.C. Tarido, S. Miki, T. Mizuno, M. Tabe, Appl. Phys. Lett. 97/26 (2010) 262101.
  17. M. Tabe, A. Udhiarto, D. Moraru, T. Mizuno, Phys. Status Solidi A, 208/3 (2011) 646.
  18. A. Udhiarto, D. Moraru, T. Mizuno, M. Tabe, Appl. Phys. Lett. 99/11 (2011) 113108.
  19. S. Petrosyan, A. Yesayan, D. Reuter, A.D. Wieck, Appl. Phys. Lett. 84/17 (2004) 3313.
  20. D. Reuter, C. Werner, A.D. Wieck, S. Petrosyan, Appl. Phys. Lett. 86/16 (2005) 162110.
  21. S.M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley & Sons, 1981, p.754.
  22. D.P. Foty, Cryogenics, 30/12 (1990) 1056.
  23. M. Fischetti, S. Laux, Phys. Rev. B, 38/14 (1998) 9721.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.