Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

Bahasa Abstract

Karakteristik Pengering Beku Vakum dengan Menggunakan Pendinginan Internal dan Panas Buang Kondenser untuk Sublimasi. Pengering beku vakum adalah metode pengeringan yang terbaik, tetapi konsumsi energinya sangat tinggi karena lamanya waktu pengeringan yang diperlukan. Penelitian ini mengkaji penggunaan panas buang kondenser untuk proses sublimasi sebagai salah satu cara untuk mempercepat laju pengeringan. Disamping itu, juga mengkaji pengaruh pendinginan internal yang dikombinasikan dengan pendinginan vakum pada waktu dilakukan proses penurunan tekanan. Tentakel ubur-ubur (Jelly fish tentacles) digunakan sebagai bahan percobaan dengan berbagai konfigurasi panas buang kondensor dan pembukaan katup pendinginan internal. Hasilnya menunjukkan bahwa pemanasan dengan panas buang kondensor dapat mempercepat laju pengeringan sampai dengan 0.0035 kg/m2.s Selain itu, pembekuan awal dengan melakukan pendinginan internal dapat mencegah terjadinya penguapan sampai dengan 0.47g dan mempercepat transformasinya menjadi padatan.


L.J. Petersen, Cancer Treat. Rev. 35 (2009) 754.

A. Visser, A.H. Gea, T.A. Winette, Van der Graaf,J.H. Harald, E.H.M. Josette, W. Hoekstra, Cancer Treat. Rev. 30 (2004) 683.

E.J. Domingo, N. Rini, M.N. Mohd Rushdan, A.N. Corazon, Ngelangel, K.L. Khunying, V.T. Tran, S.L. Karly, A.Q. Michael, Vaccine 26 (2008) M71.

R.D. Soebadi, T. Sunaryadi, J. Pain Symptom Manage. 8 (1996) 423.

R. Coleman, Acta Histochem. 112 (2010) 113.

L. Xiao, Q. He, Y. Guo, J. Zhang, F. Nie, Y. Li, X. Ye, L. Zhang, Toxicon. 53/1 (2009) 146.

J.P. George, A.K. Datta, J. Food Eng. 52/1 (2002) 89.

L. Huang, M. Zhang, A.S. Mujumdar,,R.X. Lim, J. Food Eng. 103/3 (2011) 279.

K. McDonald, D.W. Sun, J. Food Eng. 45/2 (2000) 55.

R. Chakraborty, A.K. Saha, P. Bhattacharya, Sep. Purif. Technol. 49/3 (2006) 258.

Nasruddin, M.I. Alhamid, E.A. Kosasih, M. Yulianto, Res. J. Appl. Sci. 6/5 (2011) 335.

Z.W. Cui, C.Y. Li, C.F. Song, Y. Song, Drying Technol. 26 (2008) 1517.

R. Wang, M. Zhang, A.S. Mujumdar, J. Food Eng. 101/2 (2010) 131.

A. Apichart, S. Theerakulpisut, C, Benjapiyaporn, Food Bioprod. Process. 88 (2010) 105.

L. Rey, In: L. Rey, J.C. May (Ed.), Freeze Drying/Lyophilization of Pharmaceutical and Biolitical Products, 2nd ed., Marcel Dekker Inc., New York, 2004, p.600.

Y.A. Cengel, M. Boles, Thermodynamics An Engineering Approach, 5th ed., McGraw-Hill, International Edition, Boston, MA, 2006, p.988.

X. Duan, M. Zhang, A.S. Mujumdar, S. Wang, J. Food Eng. 96/4 (2010) 491.

J.I. Lombrana, M.C. Villaran, J. Food Res. Int. 30/3–4 (1997) 213.

G.W. Oetjen, P. Haseley, Freeze Drying Second, Completely Revised and Extended Edition, WileyVCH Verlag GmbH & Co. KGaA, Weinheim, 2004, p.387.

A.S. Mujumdar, W.H. Carl, S. Czeslaw, Handbook of Industrial Drying, 3rd ed., Taylor & Francis Group, 2006, p.1312.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.