•  
  •  
 

Abstract

Electrical energy needs in Indonesia are expected to continue to rise. The use of petroleum as a source of energy still dominates, although oil reserves in Indonesia are increasingly being depleted. Therefore, there is a need to develop alternative sources of sustainable energy, such as microbial fuel cell (MFC). In this study, Lactobacillus bulgaricus was used as an electricity producer in a dual-chamber MFC reactor. We investigated the maximum electrical energy by varying the bacterial optical density (OD), the operational time of MFC, the reactor volume, the electrolyte solution, and the configuration of MFC reactor. In this study, the maximum electrical energy (201.8 mW/m2) was generated at an OD of 0.5 in an MFC reactor series using potassium permanganate as the electrolyte solution.

Bahasa Abstract

Optimasi Kinerja Microbial Fuel Cell (MFC) dengan Bakteri Lactobacillus bulgaricus. Kebutuhan energi listrik di Indonesia diperkirakan akan terus meningkat. Namun penggunaan minyak bumi sebagai sumber penghasil energi masih mendominasi, padahal cadangan minyak bumi di Indonesia kian menipis. Oleh karena itu, perlu dikembangkan alternatif penghasil sumber energi yang berkelanjutan, salah satunya adalah microbial fuel cell (MFC). Pada penelitian ini, digunakan bakteri Lactobacillus bulgaricus sebagai penghasil listrik pada reaktor MFC dual-chamber. Untuk memperoleh energi listrik yang maksimum, dilakukan variasi optical density (OD), waktu operasi, volume reaktor, larutan elektrolit, dan konfigurasi reaktor MFC. Dari penelitian ini, dihasilkan energi listrik maksimum berupa power density sebesar 201,9 mW/m2 pada reaktor MFC seri dengan OD 0,5 dan kalium permanganat sebagai larutan elektrolit.

References

  1. P.K. Barua, Int. J. Energ. Inf. Commun. 1/1 (2010) 77.
  2. B. Min, O.B. Roman, Angelidaki. Biotechnol. Lett. 30 (2008) 1213.
  3. F. Li, S. Yogesh, Y. Lei, B. Li, Q. Zhou, Appl. Biochem. Biotechnol. 160 (2010) 168.
  4. N.T. Trinh, J.H. Park, B. Kim, Korean J. Chem. Eng. 26/3 (2009) 748.
  5. K. Scott, I. Cotlarciuc, D. Hall, J.B. Lakeman, D. Browning, J. Appl. Electrochem. 38 (2008) 1313.
  6. R. Arbianti, H. Hermansyah, T.S. Utami, N.C. Zahara, I. Trisnawati, E. Kristin, J. Chem. Chemical Eng. 6/9 (2012) 814.
  7. M. Lanthier, K.B. Gregory, D.R. Lovley, J. Compil. Feder. Eur. Microbiol. Soc. 278 (2007) 29.
  8. K.J. Chae, M. Choi, F.F. Ajayi, W. Park, I.S. Chang, I.S. Kim, Energ. Fuels. 22/1 (2008) 169.
  9. S. Lee, B.Y. Jeon, D.H. Park, Biotechnol Lett. 32 (2010) 483.
  10. A. Larrosa-Guerrero, K. Scott, K.P. Katuri, C. Godinez, I.M. Head, T. Curtis, Appl. Microbiol. Biotechnol. 87 (2010) 1699.
  11. Y. Choi, E. Jung, H. Park, S.R. Paik, S. Jung, S. Kim, Bull. Korean Chem. Soc. 25/6 (2004) 813.
  12. M.D. Lorenzo, T.P. Curtis, I.M. Head, K. Scott, Water Res. 43 (2009) 3145.
  13. F. Qian, Z. He, M.P. Thelen, Y. Li, Bioresource Technol. 102 (2011) 5836.
  14. S. You, Q. Zhao, J. Zhang, J. Jiang, S. Zhao, J. Power Sources 162 (2006) 1409.
  15. N. Guerrero-Rangel, J.A. Rodriguez la Garza, Y. Garza-Garcia, L.J. Rios González, G.Z. SosaSantillan, I.M. de la Garza-Rodriguez, S.Y. Martinez-Amador, M.M. Rodriguez-Garza, J. Rodriguez, Int. J. Electrical Power Engin. 4/1 (2010) 27.
  16. Y.O.L. Momoh, B. Naeyor. J. Biochem. Tech. 2/4 (2010) 216.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.