•  
  •  
 

Abstract

Thermoelectric device is investigated by a number of researchers in order to enhance the thermoelectric efficiency. It is known that the efficiency can be improved by quantum effect. However, it is difficult to measure the thermoelectric characteristics of nanometer-scale structures. Thus a new measurement method is expected to be developed. We propose to apply Kelvin-probe force microscopy (KFM) to characterization of thermoelectric materials. KFM can locally observe surface potential of Fermi energy of a sample without touching the sample surface. In the present paper, we estimate the Seebeck coefficient of thin Si-on-insulator layers using KFM.

Bahasa Abstract

Pengembangan Sistem Pengukuran Koefisien Seebeck dengan Mikroskopi Gaya Pengamatan Kelvin. Sejumlah peneliti mengkaji alat termoelektrik untuk meningkatkan efisiensi termoelektrik. Telah diketahui bahwa efisiensi dapat ditingkatkan dengan efek kuantum. Namun, pengukuran ciri-ciri termoelektrik sulit dilaksanakan pada struktur-struktur berskala nanometer. Oleh karena itu, sebuah metode pengukuran baru harus dikembangkan. Kami menyarankan penggunaan mikroskopi gaya pengamatan Kelvin (Kelvin-probe force microscopy atau KFM) di dalam proses karakterisasi materi-materi termoelektrik. KFM dapat secara lokal mengamati potensi permukaan energi Fermi dari sebuah sampel tanpa menyentuh permukaan sampel itu. Di dalam makalah ini, kami memperkirakan koefisien Seeback dari lapisan-lapisan insulator Si-on menggunakan KFM.

References

  1. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B. 47 (1993) 12727.
  2. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B. 47 (1993) 16631.
  3. A.A. Balandin, O.L. Lazarenkova, Appl. Phys. Lett. 82 (2003) 415.
  4. M.V. Simkin, G.D. Mahan, Phys. Rev. Lett. 84 (2000) 927.
  5. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science. 297 (2002) 2934.
  6. D. Li, Y. Wu, P. Kim, I. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83 (2003) 2934.
  7. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Nafarian, A. Majumdar, P. Yang, Nature. 451 (2008) 163.
  8. A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.K. Yu, W.A. Goddard. III, J.R. Heath, Nature. 451 (2008) 168.
  9. M. Koyano, N. Akashi, J. Elecron. Mater. 38 (2009) 1037.
  10. Y. Zhang, C.L. Hapenciuc, E.E. Castillo, T. BorcaTasciuc, R.J. Mehta, C. Karthik, G. Ramanath, Appl. Phys. Lett. 96 (2010). 062107-1-3.
  11. Y. Leng, C.C. Williams, L.C. Su, G.B. Stringfellow, Appl. Phys. Lett. 66 (1995) 1264.
  12. A. Kikukawa, S. Hosaka, R. Imura, Appl. Phys. Lett. 66 (1995) 3510.
  13. A. Chavez-Pirson, O. Vatel, M. Tanimoto, H. Ando, H. Iwamura, H. Kanbe, Apple. Phys. Lett. 67 (1995) 3069.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.