Abstract
Room-temperature terahertz (THz) detectors with higher performance are necessary for utilizing the THz wave in various sensing, spectroscopy and imaging, but even the best ones in the present are still insufficient for the practical applications. This issue is essential especially in the region around 1 THz at which there exists a large technology gap between microwave and middle-infrared. Therefore, we study to develop an antenna-coupled microbolometer to achieve a high-performance THz detector operated at a room-temperature for sensing at around 1 THz frequency wave. In this paper, we present several important features and results obtained from electromagnetic simulations, which help to design a structure of the antenna and heater to absorb efficiently the power of THz wave.
Bahasa Abstract
Simulasi Elektromagnetik terhadap Mikrobolometer Berantena THz Ganda untuk Pengoperasian pada Suhu Ruang. Detektor terahertz (THz) bersuhu ruangan berkinerja tinggi diperlukan untuk memanfaatkan gelombang THz di dalam berbagai proses penangkapan sinyal, spektroskopi, dan penampilan gambar. Namun, detektor terbaik yang ada sekarang pun masih kurang memadai untuk penggunaan praktis. Kekurangan ini menjadi penting, terutama pada daerah sekitar 1 THz di mana terdapat kesenjangan teknologi yang besar antara gelombang mikro dan inframerah-sedang. Oleh karena itu, kami mengadakan penelitian untuk mengembangkan mikrobolometer berantena ganda untuk menghasilkan detektor THz berkinerja tinggi yang dapat dioperasikan pada suhu ruangan untuk menangkap sinyal pada frekuensi gelombang 1 THz. Di dalam makalah ini, kami menyajikan sejumlah fitur dan hasil penting yang didapat dari simulasi elektromagnetik yang dapat membantu dalam merancang struktur antena dan pemanas sehingga mampu menyerap daya gelombang THz secara efisien.
References
K. Sakai (Ed.), Terahertz optoelectronics, Topics Appl. Phys. 97, Springer-Verlag, Berlin Heidelerg, 2005, p.350.
S.P. Mickan, X.-C. Zhang, Int. J. High Speed Elec. Sys. 13/2 (2003) 601.
R. Koehler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Nature. 417 (2002) 156.
B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, J.L. Reno, Appl. Phys. Lett. 83/11 (2003) 2124.
N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, X.-C. Zhang, Appl. Phys. Lett. 86/5 (2005) 054105.
K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, Japan J. Appl. Phys. 43/3B (2004) L414.
H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, X.-C. Cheng, Proc. IEEE 95/8 (2007) 1514.
K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Opt. Express. 11/20 (2003) 2549.
A.J. Fitzgerald, B.E. Cole, P.F. Taday, J. Pharm. Sci. 94/19 (2005) 177.
C. Joerdens, M. Koch, Opt. Eng. 47/3 (2008) 037003.
R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, Michael Pepper, Phys. Med. Biol. 47 (2002) 3853.
M. Nagel, P.H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Buttner, Appl. Phys. Lett. 80/1 (2002) 154.
N. S. Nishioka, P.L. Richards, D.P. Woody, Appl. Opt. 17 (1978) 1562.
P.R. Bratt, Semiconductors and Semimetals, vol. 12, In: R.K. Willardson, A.C. Beer (Eds.), Academic Press, New York, San Francisco, London, Chapter 2, 1977, p.482.
N. Hiromoto, M. Saito, H. Okuda, Jpn. J. Appl. Phys. 29 (1990) 1739.
A.G. Kazanskii, P.L. Richards, E.E. Haller, Appl. Phys. Lett. 31 (1977) 496.
N. Hiromoto, T. Itabe, H. Shibai, H. Matsuhara, T. Nakagawa, H. Okuda, Appl. Opt. 31 (1992) 460.
M. Aoki, S.R. Tripathi, M. Takeda, N. Hiromoto, Electron. Express. 9/5 (2012) 333.
D.P. Neikirk, W.W. Lam, D.B. Rutledge, Int. J. Infrared Millimeter Waves. 5/3 (1984) 245.
T. Uchida, K. Hayashi, T. Furuya, T. Tachiki, T. Idehara, Y. Yasuoka, The 33rd Int. Conf. Infrared Millimeter Terahertz Waves (IRMMW-THz 2008), Pasadena, CA, U.S.A., 2008.
F. Simoens, J. Lalanne-Dera, J. Meilhan, S. Pocas, D.T. Nguyen, J.-L. Ouvrier-Buffet, O. Cathabard, P. Gellie, S. Barbieri, The 36th Int. Conf. IR, MMW, and THz wavws (IRMMW-THz 2011), W2D.4, 2011.
C.M. Hanson, H.R. Beratan, R.A. Owen, M. Corbin, S. McKenney, Proceedings of SPIE Infrared Detectors: State of the Art. 1735. Ed. W. H. Makky, 1992, p.17.
R.A. Wood, C.J. Han, P.W. Kruse, Tech. Digest of IEEE Solid-State Sensor and Actuator Workshop, 1992, p.132.
N. Hiromoto, The 9th Takayanagi Kenjiro Memorial Symposium - 4th International Symposium on Nanovision Science, Nanospace Manipulation of Photon and Electrons for Nanovision Systems, (Hamamatsu Campus, Shizuoka Univ.), 30. Oct. 2007.
M. Konami, D.M. Pozar, D.H. Schaubert, IEEE Trans. Antenna Propagation, AP-33/6 (1985) 600.
D.B. Rutledge, D.P. Neikirk D.P. Kasilingam, In: Infrared and Millimeter Waves, vol. 10, K.J. Button (Ed.), Academic Press, New York, 1983, p.90.
Anon., Field Precision LLC, http://www.fieldp.com, 2011.
Anon., HFFS Industry Standard Enhanced, http:www.ansys.com, 2011
Recommended Citation
Aoki, Makoto; Takeda, Masanori; and Hiromoto, Norihisa
(2013)
"Electromagnetic Simulation for THz Antenna-Coupled Microbolometers Operated at Room Temperature,"
Makara Journal of Technology: Vol. 17:
Iss.
1, Article 1.
DOI: 10.7454/mst.v17i1.1919
Available at:
https://scholarhub.ui.ac.id/mjt/vol17/iss1/1
Included in
Chemical Engineering Commons, Civil Engineering Commons, Computer Engineering Commons, Electrical and Electronics Commons, Metallurgy Commons, Ocean Engineering Commons, Structural Engineering Commons