•  
  •  
 

Abstract

A dynamic mathematical model for a new structure of precision air conditioning (PAC) has been developed. The proposed PAC uses an additional secondary condenser for relative humidity regulation compared to a basic refrigeration system. The work mechanism for this system and a vapour-compression cycle process of the system are illustrated using psychrometric chart and pressure-enthalpy diagram. A non-linear system model is derived based on the conservation of mass and energy balance principles and then linearized at steady state operating point for developing a 8th-order state space model suited for multivariable controller design. The quality of linearized model is analyzed in terms of transient response, controllability, observability, and interaction between input-output variables. The developed model is verified through simulation showing its ability for imitating the nonlinear behavior and the interaction of input-output variables.

Bahasa Abstract

Pemodelan Sistem Tata Udara Presisi Berstruktur Baru Menggunakan Kondenser Sekunder untuk Pengaturan RH. Tulisan ini membahas penurunan model matematis dinamis untuk sistem tata udara presisi (PAC) dengan struktur baru. Berbeda dengan sistem refrigerasi umumnya, sistem PAC yang diusulkan menggunakan kondenser sekunder tambahan untuk pengaturan kelembaban relatif. Mekanisme kerja dan proses siklus kompresi uap sistem ini diilustrasikan menggunakan psychrometric chart dan diagram tekanan-entalpi. Model nonlinier sistem diturunkan berbasis konservasi massa dan prinsip kesetimbangan energi dan kemudian dilinierisasi pada titik kerja untuk mengembangkan model ruang keadaan orde-8 yang cocok untuk disain pengendali multivariabel. Kualitas model linier dianalisa dari aspek respons transien, kontrolabilitas, observabilitas, dan interaksi antar variabel masukan-keluaran. Model yang dikembangkan diverifikasi secara simulasi menunjukkan kemampuan model untuk meniru karakteristik nonlinier dan interaksi variabel masukan-keluaran.

References

  1. V. Sorell, ASHRAE Journal 49 (2007) 32.
  2. M.J. Poort, C.W. Bullard, Int. J. Refrig. 29 (2006) 683.
  3. L.O.S. Buzelin, S.C. Amico, J.V.C. Vargas, J.A.R. Parise, Int. J. Refrig. 28 (2005) 165.
  4. Z. Li, S. Deng, Int. J. Refrig. 30 (2007) 113.
  5. C. Aprea, R. Mastrullo, C. Renno, Int. J. Refrig. 27 (2004) 639.
  6. L. Hua, S.K. Jeong, S.S. You, Int. J. Refrig. 29 (2009) 1067.
  7. J. Tian, Q. Feng, R. Zhu, Int. J. Refrig. 49 (2008) 933.
  8. X.D. He, S. Liu, H.H. Asada, J. Dyn. Syst. Meas. Control-Trans. ASME 119 (1997) 183.
  9. D. Leducq, J. Guilpart, G. Trystram, Int. J. Refrig. 29 (2006) 761.
  10. B.P. Rasmussen, A.G. Alleyne, J. Dyn. Syst. Meas. Control-Trans. ASME 126 (2004) 54.
  11. J.L. Lin, T.J. Yeh, Int. J. Refrig. 30 (2007) 209.
  12. Q. Qi, S. Deng, Int. J. Refrig. 31 (2008) 841.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.