•  
  •  
 

Abstract

Microbial xylanases or xylanolytic enzyme have received considerable attention over the last years owing to a multitude of possible applications. These enzymes have potential in the biodegradation of lignocellulosic biomass to fuels, chemicals, fruit juice, animal feed and in improving rumen digestion. More recently, the use of xylanases as bleaching agent in the pulp and paper industry has been suggested to replace of some of the chemicals presently used for this purpose. Such applications could have an important positive impact on the environment. The purpose of this research was determining the synergy of 3 recombinant xylanolytic enzymes (β-xylosidase, exo-xylanase and α-Larabinofuranosidase) from recombinant Eschericia coli BL21 (DE-star) in xylan hydrolysis by analysis the reduction sugar product. Purified of recombinant xylanolytic enzyme β-xylosidase (Xyl), exo-xylanase (Exo-Xyl) and α-Larabinofuranosidase (Abfa) with Ni-NTA resin. Seven samples of enzyme (each and enzyme mixture) used to hydrolyze xylan substrate (oat-spelt xylan). Analysis of hydrolysis product was done by HPLC. The xylanolytic activities of this enzyme before and after purification were 0,91 and 9,94 U/mL (Exo-Xyl); 1,65 and 14,2 U/mL (Xyl); 0,65 and 5,6 U/mL (Abfa). The xylosidase activity were 2,37 and 14,3 U/mL (Xyl); 1,49 and 10,5 U/mL (Exo-Xyl); 2,54 and 18,6 U/mL (Abfa). The highest hydrolysis product of xylan (xylose) shown in enzyme mixture of exoxylanase and β-xylosidase was 1,084 mg/mL.

References

  1. B.C. Saha, J. Ind Microbiol Biotechnol. 30 (2003) 279.
  2. B.C. Saha, Bioresources Technol. 90 (2003) 33.
  3. Q.K. Beg, M. Kapoor, L. Mahajan, G.S. Hoondal, Appl Microbiol Biotechnol. 56 (2001) 326.
  4. M.P. Coughlan, G.P. Hazlewood, Hemicellulose and Hemicellulases, Portland Press, London and Chapel Hill, 1992, p. 152.
  5. N.N.T. Puspaningsih, Dissertation. Post Graduate program, Bogor Agricultural Institute, Indonesia, 2004.
  6. N.N.T. Puspaningsih, H. Suwito, S. Sumarsih, A. Rohman, O. Asmarani, Berk. Penel. Hayati. 12 (2007) 191.
  7. L.G. Miller, Anal chem. 31 (1959) 426.
  8. A. Kumalawati, Skripsi Sarjana, Jurusan Kimia FMIPA, Universitas Airlangga, Indonesia, 2005.
  9. Novagen, Protein Purification Protocol by Affinity Chromatography (His bind Ni-NTA-Qiagen), EMD, http://www.emdbiosciences.com/novagen, 2001.
  10. A. Rohman, N. Van Oosterwijk, S. Kralj, L. Dijkhuizen, B.W. Dijkstrab, N.N.T. Puspaningsih, Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 63/11 (2007) 932.
  11. S. Canakci, A.O. Belduz, B.C. Saha, A. Yasar, F.A. Ayaz, N. Yayli, Appl. Microbiol. Biotechnol. 75 (2007) 813.
  12. L. Weinstein, P. Albersheim, Plant Physiol. 63 (1979) 425.
  13. P.J.Y.M.J. Schyns, J. Frankrijker, A.J.B. Zehnder, A.J.M. Stares, Appl. Microbiol. Biotechnol. 42/4 (1994) 548.
  14. E. Tajana, A. Fiecheter, W. Zimmermann, Appl. Environ. Microbiol. 58/5 (1992) 1447.
  15. M. Tuncer, A.S. Ball, J. Appl Microbiol 94 (2003) 1030.
  16. A.K.M. Rahman, N. Sugitani, M. Hatsu, K. Takamizawa, Can J. Microbiol. 49 (2003) 58.
  17. T. Hashimoto, Y. Nakata, J. Biosci. Bioeng. 95/2 (2003) 164.
  18. H.R. Sorensen, A.S. Meyer, S. Pedersen, J. Biotechnol. Bioeng. 81/6 (2003) 726.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.