Static Hand Gesture Recognition of Indonesian Sign Language System Based on Backpropagation Neural Networks. The main objective of this research is to perform pattern recognition of static hand gesture in Indonesian sign language. Basically, pattern recognition of static hand gesture in the form of image had three phases include: 1) segmentation of the image that will be recognizable form of the hands and face, 2) feature extraction and 3) pattern classification. In this research, we used images data of 15 classes of words static. Segmentation is performed using HSV with a threshold filter based on skin color. Feature extraction performed with the Haar wavelet decomposition filter to level 2. Classification is done by applying the back propagation system of neural network architecture with 4096 neurons in input layer, 75 neurons in hidden layer and 15 neurons in output layer. The system was tested by using 225 data validation and accuracy achieved was 69%.

Bahasa Abstract

Tujuan utama dari penelitian yang dilakukan adalah melakukan pengenalan pola isyarat tangan statis dalam bahasa Indonesia. Pengenalan pola isyarat tangan statis dalam bentuk citra secara garis besar dilakukan dalam 3 tahapan yang meliputi: 1) Segmentasi bagian citra yang akan dikenali berupa tangan dan wajah, 2) ekstraksi ciri, dan 3) klasifikasi pola. Data citra yang diterapkan ada 15 kelas kata isyarat statis. Segmentasi dilakukan dengan menggunakan filter HSV dengan ambang berdasarkan warna kulit. Ekstraksi ciri dilakukan dengan dekomposisi wavelet Haar filter sampai level 2. Klasifikasi dilakukan dengan menerapkan sistem jaringan syaraf tiruan perambatan balik dengan arsitektur 4096 neuron pada lapisan input, 75 neuron pada lapisan tersembunyi dan 15 neuron pada lapisan output. Sistem diuji dengan menggunakan 225 data validasi dan akurasi yang dicapai adalah 69%.


K. Symeonidis, Hand Gesture Recognition using neural networks, Final Report Thesis Master of Science in Multimedia Signal Processing Communications School of Electronic and Electrical Engineering, UK, 2000.

S.L. Pung, Abdesslam Bouzerdoum, and Douglas Chai, Proc. Int Symposium on Signal Processing and its Applications, Paris, 2003, p.525.

E.S. Nielsen, L.A. Canalis, M.H. Tejera, Journal of WSCG 12 (2004) 395.

B. Bauer, K.-F. Kraiss, Proceeding of International Gesture Workshop, London, 2001, p.64.

M.J. Jones, J.M. Rehg, Int. J. of Comput. Vision. 46 (2002) 81.

B. Bauer, K.-F. Kraiss, Proceeding of International Conference on Pattern Recognition, 2 (2002) 434.

D. Saxe, R. Foulds, IEEE International Conference on Automatic Face and Gesture Recognition, Killington, 1996, p. 379.

Y. Cui, J. Weng, Comput. Vision Image Undertanding 78 (2000) 157.

C.L. Huang, S.H. Jeng, Mach. Vision Appl. 12 (2001) 243.

N. Tanibata, N. Stimada, J. Shirai, Proceeding of International Conference on Vision Interface, Calgary, Canada, 2002, p. 369.

M.H. Yang, N. Ahuja, M. Tabb, IEEE Transaction on Pattern Analysis and Machine Intelligence 24 (2002) 1061.

J.C. Terrillon A. Pilpre, J. Niwa, K. Yamamoto, Proceeding of International Conference on Vision Interface, Calgary, Canada , 2002, p. 369.

R. Carlos, P. Dionisio, M. Roberto, J.R. Cesar, Proceeding of the XIII Brazilian Symposium on Computer Graphics and Image Processing, Gramado, 2000.

P. Vamplew, Proceeding of 1st Euro Conference Disability, Virtual Reality Assoc. Tech., Maidenhead, UK, 1996, p. 27.

F.O. Mean, T.J. Low, W. Satrio, Proceeding of World Academy of Science, Engineering and Technology, Singapore, 42 (2008) 26.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.