•  
  •  
 

Abstract

The Stability Characteristics of Sandbag Submerged Breakwater. Breakwater is one of coastal structures to overcome problems of abrasion. Due to difficulties in obtaining rock material at the coastal area. The using of sandbags as a breakwater provides advantages in utilizing local materials. A Sandbag has a smooth surface, so the internal shear forces are relatively small. According to these phenomena, the research for parameters that are expected to affect the stability of the sand bags. These parameters are a slope, shape and formation of sand bags. This experimental research conducted in two dimensional physical model and took place on the flume tank of Ocean Engineering Department, Faculty of Marine Technology, ITS. Scaled model 1 : 10. The bag was made in shapes, B1 and B2. Sand bags were prepared with the slope 1 : 1.5 and 1 : 2,0, width of top was 60 cm. The waves were regular waves, period of 1.5 seconds. The wave height was adjusted with the level of stability sand bags. It showed that the response of the sandbag was influenced by interlocking between sandbags. As a result, the stability depended on the change of wave forces, as a consequence of the change of slope and cross areas due to sandbags shape and formation type.

Bahasa Abstract

Struktur pemecah gelombang merupakan salah satu cara untuk mengatasi masalah abrasi. Pantai merupakan daerah yang relatif sedikit memiliki material batuan sehingga jenis material pemecah gelombang harus menjadi pertimbangan utama. Kelebihan penggunaan kantong pasir sebagai pemecah gelombang adalah dapat dimanfaatkannya material setempat. Atas pemikiran tersebut, dilakukan penelitian mengenai perilaku stabilitas pemecah gelombang kantong pasir tipe tenggelam. Permukaan kantong pasir relatif halus sehingga gaya gesek antar kantong (interlocking) relatif kecil. Sesuai fenomena tersebut, dilakukan kajian parameter yang berpengaruh terhadap stabilitas susunan kantong pasir. Parameter tersebut adalah kemiringan susunan, bentuk dan susunan kantong pasir. Penelitian ini bersifat eksperimental model fisik 2-D, dilakukan di kolam Gelombang Laboratorium Lingkungan dan Energi Laut, Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, ITS Surabaya. Skala model yang digunakan adalah 1 : 10. Kantong dibuat menjadi dua bentuk, B1 dan B2. Kemiringan model dibuat menjadi dua tipe, 1 : 1,5 dan 1 : 2,0, lebar puncak ditentukan 60 cm. Gelombang teratur (reguler) digunakan pada penelitian ini, periode gelombang ditentukan 1,5 detik, sedangkan tinggi gelombang disesuaikan dengan tingkat stabilitas susunan kantong pasir. Hasil pengujian menunjukkan bahwa respon susunan kantong pasir dipengaruhi oleh gaya gesek antar kantong. Stabilitas susunan kantong pasir dipengaruhi perubahan gaya gelombang sebagai akibat perubahan kemiringan dan perubahan luas penampang, seperti jenis susunan dan bentuk kantong.

References

  1. S.J. Restall, L.A. Jackson, G. Heerten, W.P. Hornsey, Geotext. Geomembr. 20 (2002) 321.
  2. R. Silvester, J.R.C. Hsu, Coastal Stabilization, Innovative Concepts, Prentice Hall, Englewood Cliffs, New Jersey, 1992, p. 475.
  3. Z. Lijun., J. Wang, N.S. Cheng, et al., J. Waterw. Port Coastal Ocean Eng. 130/2 (2004) 98.
  4. E.C. Shin, Y.I. Oh, Geotext. Geomembr. 25 (2007) 264.
  5. N. Yuwono, Dasar-Dasar Perencanaan Bangunan Pantai, Laboratorium Hidrolika dan Hidrologi, PAU IT UGM, Yogyakarta, 1992, p. V-6.
  6. K.P. Black, S.T. Mead, J. Coastal Manage. 27/4 (1999) 355.
  7. H.F. Burcharth, In: M.B. Abbot, W.A. Price (eds), Coastal, Estuarial, and Harbour Engineers’ Reference Book, E & FN SPON London, 1994, p. 381.
  8. S.D. Newberry, J.P. Latham, T.P. Stewart, J.D. Simm, Proceeding of the 28th International Conference Coastal Engineering, Cardif Wales, 2002, p. 1436.
  9. G. Heerten, L.A. Jackson, International Conference on Coastal Engineering 2000-Sydney Australia, 2000, p. 1733.
  10. J.J. Sharp, M.H.A. Khader, Symposium on Scale Effects in Modelling Hydraulic Structures, ed. H. Kobus IAHR, 1984, p. 7.12-1.
  11. K.G. Shirlal, S.R. Manu, Ocean Eng. 34 (2007) 2093.
  12. R.Y. Hudson, Waterways Harbor Div. 85 (1959) WW3.
  13. K.W. Pilarczyk, Geosynthetics and Geosystems in Hydraulic and Coastal Engineering, A.A. Balkema Rotterdam, 2000, p. 318.
  14. J.A. Recio, PhD. Thesis, Bauingenieurwesen und Umweltwissenscaften der Technischen Universitat Carolo-Wilhelmina zu Braunschweig, Braunschweig, 2007.
  15. CERC, Departement of The Army Waterway Experiment Station, Corps of Engineering Research Center, 4th ed, US Government Printing Office, Washington, 1984.
  16. J.A. Battjes, Proceedings 14th Int. Conf. on Coastal Engineering, ASCE, Copenhagen, 1974, p. 69.
  17. K. Irschik, U. Sparboom, H. Oumeraci, Proceeding of the 29th International Conference Coastal Engineering 2004, ASCE Lisbon 2004, p. 568-580.
  18. M.J.L. Porraz, A.J.A. Maza, R.R. Medina, Proceedings Conference on Coastal Structures, ASCE, 1979, p. 270.
  19. H. Oumeraci, M. Hinz, M. Bleck , A. Kortenhaus, Proceeding Coastal Structure, Portland Oregon USA, 2003, p. 1.
  20. R.Y. Hudson, Miscellaneous Paper H-74-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 1974.
  21. CERC, Coastal Engineering Manual, Department of The Army Waterway Experiment Station, Corps of Engineering Research Center, Fourth Edition, US Government Printing Office, Washington, 2001, p. V-5-65.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.