•  
  •  
 

Abstract

Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food and cosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor for utilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil and water, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that the hydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between the interfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reaction mechanism should be considered in the model.

References

F. Beisson, A. Tiss, C. Riviere, R. Verger, Method for lipase detection and assay: a critical review, Eur. J. Lipid Sci. Technol. (2000) 133-153.

J.B. Snape, M. Nakajima, Processing of agricultural fats and oils using membrane technology, J. Food. Eng. 30 (1996) 1-41.

T. Nagao, H. Watanabe, N. Goto, K. Onizawa, H. Taguchi, N. Matsuo, T. Yasukawa, R. Tsushima, H.Shimasaki, H. Itakura, Dietary diacylglycerol suppressed accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial, J. Nutrition 130 (2000) 792-797.

M.G. Soni, H. Kimura, G.A. Burdock, Chronic study of diacylglycerol oil in rats, Food Chem. Tox.39 (2001) 317-329.

N. Tada, H. Watanabe, N. Matsuo, I. Tokimitsu, M. Okazaki, Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols, Clin. Chim. Acta 311 (2001) 109-117.

T. Murase, T. Mizuno, T. Omachi, K. Onizawa, Y Komine, H. Kondo, T. Hase, I. Tokimitsu, Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice, J. Lipid Res. 42 (2001) 372-278.

T. Murase, M. Aoki, T. Wakisaka, T. Hase, I. Tokimitsu, Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: dietary metabolism, J. Lipid Res. 43 (2002) 1312.

H. Taguchi, T. Nagao, H. Watanabe, K. Onizawa, T. N. Matsuo, I. Tokimitsu, H. Itakura, Energy value and digestibility of dietary oil containing mainly 1,3-diacylglycerol are similar to those of triacylglycerol, Lipids 36 (2001) 379-382.

J.A. Kent, Riegel’s Handbook of Industrial Chemistry, 7th Edition, Van Nostrand Reinhold, New York, USA (1974) pp.368-371.

P. Villeneuve, J.M. Muderhwa, J. Graile, M.J. Haas, Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approach, J. Mol. Cat. B: Enzymatic 9 (2000) 113-148.

X. Xu, Engineering of enzymatic reactions and reactors for lipid modification and synthesis, Eur. J. Lipid Sci. Technol. 105 (2003) 289-304.

P. Villeneuve, M. Pina, D. Monte, J. Graille, Determination of lipase specificities through the use of chiral triglycerides and their racemics, Chem. Phys. Lipids 47 (1995) 109-113.

S. Benjamin, A. Pandey, Candida rugosa lipases: Molecular biology and versatility in biotechnology, Yeast 14 (1998) 1069-1087.

F.D. Gunstone, What else besides commodity oils and fats, Fett/Lipid 101 (1999) 124-131.

X. Xu, Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review, Eur. J. Lipid Sci. Technol. (2000) 287-303.

R. Sharma, Y. Chisti, U.C. Banerjee, Production, purification, characterization and applications of lipases, Biotechnol. Adv. 19 (2001) 627-662.

R.V. Muralidhar, R. Marchant, P. Nigam, Lipases in racemic resolutions, J. Chem. Tech. Biotechnol.76 (2001) 3-8.

J. Lavayre, J. Verrier, J. Barrati, Stereospecific hydrolysis by soluble and immobilized lipases, Biotechnol. Bioeng. 14 (1982) 2175-2187.

H.T. Khor, N.H. Tan, C.L. Chua, Lipase-catalyzed hydrolysis of palm oil, JAOCS 63 (1986) 538-540.

M. Goto, M. Goto, F. Nakashio, K. Yoshizuka, K. Inoue, Hydrolysis of triolein by lipase in a hollow fiber reactor, J. Membrane Sci. 74 (1992) 207-214.

F.J. Plou, M. Barandiaran, M.V. Calvo, A. Ballesteros, E. Pastor, High-yield production of mono- and di-oleylglycerol by lipase catalyzed hydrolysis of triolein, Enzyme Microb. Technol. 18 (1996) 66-71.

X.Y. Wu, S. Jaaskelainen, Y. Linko, An investigation of crude lipases for hydrolysis, esterification, and transesterification, Enzyme Microb. Technol. 19 (1996) 226-231.

L. Nini, L. Sarda, L.C. Comeau, E. Boitard, J.P. Dubes, H. Chahinian, Lipase-catalyzed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study, Biochim. Biophys. Acta 1534 (2001) 34-44.

F. Yang, A.J. Russell, A comparison of lipasecatalyzed ester hydrolysis in reversed micelles, organic solvents and biphasic systems, Biotechnol. Bioeng. 47 (1995) 60-70.

K.C. O’Connor, J.E. Bailey, Hydrolysis of emulsified tributyrin by porcine pancreatic lipase,Enzyme Microb. Technol. 10 (1987) 352-356.

Y.J. Wang, J.Y. Sheu, F.F. Wang, J.F. Shaw, Lipase-catalyzed oil hydrolysis in the absence of added emulsifier, Biotechnol. Bioeng. 31 (1988) 628-633.

J.G.T. Kierkels, L.F.W. Vleugels, J.H.A. Kern, E.M. Meijer, M. Kloosterman, Lipase kinetics: Online measurement of the interfacial area of emulsions, Enzyme Microb. Technol. 12 (1990) 760-763.

D.M.F. Prazeres, F.A.P. Garcia, J.M.S Cabral, Kinetics and stability of a chromobacterium viscosum lipase in reversed micellar and aqueous media, J. Chem. Tech. Biotechnol. 53 (1992) 159-164.

M. Tanigaki, M. Sakata, H. Wada, Hydrolysis of soybean oil by lipase with a bioreactor having two different membranes, J. Perment. Bioeng. 75 (1993) 53-57.

A. Sugihara, T. Senoo, A. Enoki, Y. Shimada, T. Nagao, Y. Tominaga, Purification and characterization of a lipase from Phicia burtonii, Appl. Microbiol. Biotechnol. 43 (1995) 277-281. [31] X. Fu, X. Zu, K. Gao, J. Duan, Oil and fat hydrolysis with lipase from Aspergillus sp., JAOCS 72 (1995) 527-531.

Y. Gargouri, A. Bensalah, I. Doucns het, R. Verger, Kinetic behaviour of pancreatic lipase in five species using emulsion and monomolecular films of synthetic glycerides, Biochim. Biphys. Acta 1257 (1995) 223-229.

E. Cernia, L. Battinelli, S. Soro, Biocatalysed hydrolysis of triglycerides in emulsion and as monolayers, Thin Solid Film 284-285 (1996) 727-730.

L. Giorno, E. Drioli, Catalytic behavior of lipase free and immobilized in biphasic membrane reactor with different low water-soluble substrates, J.Chem. Tech. Biotechnol. 69 (1997) 11-14.

C. Albasi, J.P. Riba, I. Sokolovska, V. Bales, Enzymatic hydrolysis of sunflower oil: characterisation of interface, J. Chem. Tech. Biotechnol. 69 (1997) 329-336.

L.R. Weatherley, D.W. Rooney, M.V. Niekerk, Clean synthesis of fatty acids in an intensive lipasecatalyzed bioreactor, J. Chem. Tech. Biotechnol. 68 (1997) 437-441.

Y. Shimada, N. Fukushima, H. Fujita, Y. Honda, A. Sugihara, Y. Tominaga, Selective hydrolysis of borage oil with Candida rugosa lipase: two factors affecting the reaction, JAOCS 75 (1998) 1581-1586.

Q. Gan, H. Rahmat, L.R. Weatherley, Simultaneous reaction and separation in enzymatic hydrolysis of high oleat sunflower oil – evaluation of ultrafiltration performance and process energy, Chem. Eng. J. 71 (1998) 87-96.

C. Albasi, N. Bertrand, J.P. Riba, Enzymatic hydrolysis of sunflower oil in a standardized agitated tank reactor, Bioproc. Eng. 20 (1999) 77-81.

Q. Gan, F. Baykara, H. Rahmat, L.R. Weatherley, Analysis of a direct contact membrane reactor for lipase catalyzed oil hydrolysis in a dynamic emulsion system, Catal. Today 56 (2000) 179-190.

J.C. Wu, Z.M. He, C.Y. Yao, K.T. Yu, Increased activity and stability of Candida rugosa lipase in reverse micelles formed by chemically modified AOT in isooctane, J. Chem. Technol. Biotechnol. 76 (2001) 949-953.

D. Rooney, L.R. Weatherley, The effect of reaction conditions upon lipase catalyzed hydrolysis of high oleate sunflower oil in a stirred liquid-liquid reactor, Process Biochem. 36 (2001) 947-953.

S. Al-Zuhair, K.B. Ramachandran, M. Hasan, Investigation of the specific interfacial area of a palm oil-water system, J. Chem. Technol. Biotechnol. 79 (2004) 706-710.

I.M. Noor, M. Hasan, K.B. Ramachandran, effect of operating variables on the hydrolysis rate of palm oil by lipase, Process Biochem. 39 (2003) 13-20.

V.R. Murty, J. Bath, P.K.A. Muniswaran, Hydrolysis of rice bran oil using an immobilized lipase from Candida rugosa in isooctane, Biotechnol. Let. 26 (2004) 563-567

K. Naoe, S. Awatsu, Y. Yamada, M. Kawagoe, K. Nagayama, M. Imai, Solvent condition in triolein hydrolysis by Rhizopus delemar lipase using an AOT reverse micellar system, Biochem. Eng. J. 18 (2004) 49-55.

H.S. Wu, M.J. Tsai, Kinetics of tributyrin hydrolysis by lipase, Enzyme Microb. Technol. 35 (2004) 488-493.

H. Haiker, H. Lengsfeld, P. Hadvary, F. Carriere, Rapid exchange of pancreatic lipase between triacylglycerol droplets, Biochim. Biphys. Acta 1682 (2004) 72-79.

S. Lee, S. Hwang, K. Lee, I.S. Ahn, Microscopic analysis of ester hydrolysis reaction catalyzed by Candida rugosa lipase, Coll. and Surf. B: Biointerfaces. 47 (2006) 78-84.

C.S. Wang, J.A. Hartsuck, D. Weiser, Kinetics of acylglycerol hydrolysis by human milk protein, Biochim. Biophys. Acta 837 (1985) 111-118.

R. Verger, M.C.E Mieras, G.H. Haas, Action of phospholipase A at interface, J. Biol. Chem. 248 (1972) 4023-4034.

J. W. Lagocki, J.H. Law, F. J. Kezdy, The kinetics study of enzyme action on substrate monolayers: Pancreatic lipase reactions*, J. Biol. Chem. 248 (1973) 580-587.

M. Tanigaki, M. Sakata, H. Takaya, K, Mimura, Hydrolysis of palm stearin oil by a thermostable lipase in a draft tube-type reactor, J. Perment.Bioeng. 80 (1995) 340-345.

R. Arroyo, F. J. Sanchez-Muniz, C. Cuesta, F. J. Burguillo, J. M. Sanchez-Montero, Hydrolysis of used frying palm olein and sunflower oil catalyzed by porcine pancreatic lipase, Lipids 31 (1996) 1133-1139.

S. Fadiloglu, Z. Soylemez, Kinetic of lipasecatalyzed hydrolysis of olive oil, Food Res. Int. 30 (1997) 171-175.

R. Arroyo, F. J. Sanchez-Muniz, C. Cuesta, J. V. Sinisterra, J. M. Sanchez-Montero, Thermoxidation of substrate models and their behavior during hydrolysis by porcine pancreatic lipase, JAOCS 74 (1997) 1509-1517.

S.C. Mohapatra, J.T. Hsu, Lipase kinetics in organic-water solvent with amphipathic substrate for chiral reaction, Biotechnol Bioeng. 55 (1997) 399-407.

T. Kaambre, V. Tougu, P. Kaambre, H. Vija, P. Sikk, Hydrolysis of emulsified mixtures of triacylglycerols by pancreatic lipase, Biochim. Biphys. Acta 1431 (1999) 97-106.

O. Martinez, A.M. Wilhelm, J.P. Riba, Kinetic study of an enzymatic liquid-liquid reaction: The hydrolysis of tributyrin by Candida cylindracea lipase, J. Chem. Tech. Biotechnol. 53 (1992) 373-378.

Y. Kawano, M. Kawasaki, K. Shiomori, Y. Baba, T. Hano, Hydrolysis kinetics of olive oil with lipase in a transfer cell, J. Ferment. Bioeng. 77 (1994) 283-287.

Y. Kawano, S. Kiyoyama, K. Shiomori, Y. Baba, T. Hano, Hydrolysis of olive oil with lipase in a “VibroMixer”, J. Ferment. Bioeng. 78 (1994) 293-297.

K. Shiomori, T. Hayashi, Y. Baba, Y. Kawano, T. Hano, Hydrolysis rates of olive oil by lipase in a monodispersed O/W emulsion system using membrane emulsification, J. Ferment. Bioeng. 80 (1995) 552-558.

S. Mukataka, T. Kobayashi, J. Takahashi, Kinetics of enzymatic hydrolysis of lipids in biphasic organic-aqueous system. J. Perment. Bioeng. 63 (1985) 461-466.

S. Al-Zuhair, M. Hasan, KB.. Ramachandran, Kinetics of the enzymatic hydrolysis of palm oil by lipase, Process Biochem. 38 (2003) 1155-1163.

S. Al-Zuhair, K.B. Ramachandran, M. Hasan, Unsteady-state kinetics of lipolytic hydrolysis of palm oil in a stirred bioreactor, Biochem. Eng. J. 19 (2004) 81-86.

S.W. Tsai, C.L. Chiang, Kinetics, mechanism, and time course analysis of lipase-catalyzed hydrolysis of high concentration olive oil in AOT-Isooctane reversed micelles, Biotechnol. Bioeng. 38 (1991) 206-211.

S.W. Tsai, G.H. Wu, C.L. Chiang, Kinetics of enzymatic hydrolysis of olive oil in biphasic organic-aqueous systems, Biotechnol. Bioeng. 38 (1991) 761-766.

S. Al-Zuhair, K.B. Ramachandran, M. Hasan, High enzyme concentration model for the kinetics of hydrolysis of oils by lipase, Chem. Eng. J. 80 (2004) 552-558.

H.S. Garcia, F.X. Malcata, C.G. Hill, C.H. Amundson, Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat, Enzyme Microb.Technol. 14 (1992) 535-545.

K.E. Rice, J. Watkins, C.G. Hill, Hydrolysis of menhaden oil by Candida cylindracea lipase immobilized in a hollow-fiber rector, Biotechnol. Bioeng. 63 (1999) 33-45.

H. Hermansyah, M. Kubo, N. Shibasaki-Kitakawa, T. Yonemoto: Biochem. Eng. J. 31 (2006) 125-132.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.