•  
  •  
 

Abstract

Utilization of Bagasse Cellulose for Ethanol Production through Simultaneous Saccharification and Fermentation by Xylanase. Bagasse is a solid residue from sugar cane process, which is not many use it for some product which have more added value. Bagasse, which is a lignosellulosic material, be able to be use for alternative energy resources like bioethanol or biogas. With renewable energy resources a crisis of energy in Republic of Indonesia could be solved, especially in oil and gas. This research has done the conversion of bagasse to bioethanol with xylanase enzyme. The result show that bagasse contains of 52,7% cellulose, 20% hemicelluloses, and 24,2% lignin. Xylanase enzyme and Saccharomyces cerevisiae was used to hydrolyse and fermentation in SSF process. Variation in this research use pH (4, 4,5, and 5), for increasing ethanol quantity, SSF process was done by added chloride acid (HCl) with concentration 0.5% and 1% (v/v) and also pre-treatment with white rot fungi such as Lentinus edodes (L.edodes) as long 4 weeks. The SSF process was done with 24, 48, 72, and 96 hour’s incubation time for fermentation. Variation of pH 4, 4,5, and 5 can produce ethanol with concentrations 2,357 g/L, 2,451 g/L, 2,709 g/L. The added chloride acid (HCl) with concentration 0.5% and 1% (v/v) and L. edodes can increase ethanol yield, The highest ethanol concentration with added chloride acid (HCl) concentration 0.5% and 1% consecutively is 2,967 g/L, 3,249 g/L. The highest ethanol concentration with pre-treatment by L. edodes is 3,202 g/L.

Bahasa Abstract

Bagas merupakan residu padat pada proses pengolahan tebu menjadi gula, yang sejauh ini masih belum banyak dimanfaatkan menjadi produk yang mempunyai nilai tambah (added value). Bagas yang termasuk biomassa mengandung lignoselulosa sangat dimungkinkan untuk dimanfaatkan menjadi sumber energi alternatif seperti bioetanol atau biogas. Dengan pemanfaatan sumber daya alam terbarukan dapat mengatasi krisis energi terutama sektor migas. Pada penelitian ini telah dilakukan konversi bagas menjadi etanol dengan menggunakan enzim xylanase. Perlakuan dengan enzim lainnya saat ini sedang dikerjakan di laboratorium kami mengingat hemisulosa juga mengandung polisakarida lainnya yang dapat didekomposisi oleh berbagai enzim. Hasil penelitian menunjukkan kandungan lignoselulosa pada bagas sebesar lebih kurang 52,7% selulosa, 20% hemiselulosa, dan 24,2% lignin. Hemiselulosa merupakan polisakarida yang dapat dihidrolisis oleh enzim xylanase dan kemudian akan difermentasikan oleh yeast S. cerevisiae menjadi etanol melalui proses Sakarifikasi dan Fermentasi Serentak (SSF). Beberapa parameter yang dianalisis pada penelitian ini antara lain kondisi pH (4, 4,5, dan 5), untuk meningkatkan kuantitas etanol dilakukan penambahan HCl berkonsentrasi rendah (0,5% dan 1% (v/v)) dan bagas dengan perlakuan jamur pelapuk putih (L. edodes) selama 4 minggu. Proses SSF dilakukan dengan waktu inkubasi selama 24, 48, 72, dan 96 jam. Perlakuan dengan pH 4, 4,5, dan 5 menghasilkan konsentrasi etanol tertinggi berturut-turut 2,357 g/L, 2,451 g/L, 2,709 g/L. Perlakuan penambahan HCl konsentrasi rendah mampu meningkatkan produksi etanol, penambahan dengan konsentrasi HCL 0,5 % dan 1 % berturut-turut menghasilkan etanol 2,967 g/L, 3,249 g/L. Perlakuan dengan menggunakan jamur pelapuk putih juga dapat meningkatkan produksi etanol yang dihasilkan. Setelah bagas diberi perlakuan L. edodes 4 minggu mampu menghasilkan etanol dengan hasil tertinggi 3,202 g/L.

References

  1. Lynd, L.R., Bothast, R.J., Wyman, D.E. 1991. Fuel etanol from cellulosic biomass. Science 251: 1318- 1323.
  2. Wyman, C.E., 1994. Etanol from ligcellulosic biomass: Technology, economics, and opportunities. Biores. Technol. 50, 3-6. [3] Millan, J.D. 1997. Bioetanol production: status dan prospects. Renewable Eng. 10, 295-302.
  3. Pandey,A. Soccol,C.R. Nigam,P. And Soccol,V.T. 2000. Biotechnological potential of agro-indistrial residues. Sugarcane bagasse. Bioresour Technol.74: 69-80
  4. Samsuri, M. “Pengaruh Perlakuan Jamur Pelapuk Putih dan Steaming pada Produksi Ethanol dari Bagas melalui proses Sakarifikasi dan Fermentasi secara Serentak (SSF).” Tesis, Program Pasca Sarjana Fakultas Teknik UI, Depok, 2006.
  5. Itoh. H., Wada. M., Honda. Y., Kuwahara. M., Watanabe. T., 2003. Bioorganosolve pretreatments for simultaneous saccharification dan fermentation of beech wood by etanolysis dan white rot fungi. J.Biotechnol. 103, 273-280
  6. Castello, R., dan Chum, H. (1998). Biomass, bioenergi dan carbon management. In “Bioenergi '98: Expdaning Bioenergi Partnerships” (D.Wichert, ed.). pp. 11-17.
  7. Lee, S. S., J. K. Ha, H. S. Kang, T. McAllister, and K.-J. Cheng. 1997. Overview of energy metabolism, substrate utilization and fermentation characteristics of ruminal anaerobic fungi. Korean J. Anim. Nutr. Feedstuffs 21:295–314.
  8. Samsuri, M., Hermiati, E., Prasetya, B., Honda, Y., Watanabe, T., 2005 Efects of fungal treatment on ethanol production from bagas using Simultaneous Sacharificatin and Fermentation. Preceeding of fifth international wood science seminar, 29-31 Agustus 2005.
  9. Sun, Y., Cheng, J. 2002. Hydrolysis of lignocellulosic materials for etanol production:review. Biores. Technol 83, 1-11.
  10. Ramos J, Rojas T, at. All. 2004. Enzymatic and fungal treatments on Sugarcane bagas for the production mechanical pulp. J. Aric. Food Chem 52, 5057-5062
  11. Frazier, W. C. And Westhoff D. C. (1978). Food Microbiology. 3rd Edition. Hill Publishing Co. New York.
  12. Palmqvist, E. 1998. Fermentation of lignocellulosic hydrolysates: inhibation and detoxification. Doctoral thesis, Lund University, Lund, Sweden.
  13. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., Alfani, F., (2004). Comparison of different detoxification methods for steamexploded poplar wood as a substrat for the bioproduction of etanol in SHF dan SSF. Process biochem. 39, 1533-1542.
  14. Blanchette, R.A., Burnes, T.A., Eerdmans, M.M., Akhtar, M., 1992. Evaluating Isolates Of Phanerochaete Chrysosporium And Ceriporiopsis Subvermispora For Use In Biological Pulping Process. Holzforschung 46, 105-115.
  15. Hatakka, A. (2001) Biodegradation of lignin. In M. Hofrichter and A. Steinbüchel (eds.), Biopolymers, vol. 1. Wiley-VCH, Weinheim, Germany. p. 129-180.
  16. Nagai, M., Sato, T., Watanabe, H., Saito, K., Kawata, M. and Enei, H. (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335.Pan, X., Arato C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., Saddler, J., 2004. Biorefiningof softwoods using etanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade etanol and coproducts. Biotechnol. Bioeng. 90, 473-481.
  17. Hofrichter, M. (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microb. Technol. 30:454-466.
  18. Reinhammar B.1984. Laccase. In: Lontie R. (Ed.). Copper proteins and copper enzymes, Vol. III. Boca Raton, FL: CRC Press, Boca Raton. Pp. 1-35.
  19. Thurston CF. 1994. The Structure and functin of fungal laccases. Microbiology 14, pp. 19-26.
  20. Bourbonnais R, and Paice M. 1990. Oxidation of non-phenolic substrates. An expanded role of laccases in lignin biodegration. FEBS lett. 267, pp.99-102.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.