•  
  •  
 

Indonesian Journal of Medical Chemistry and Bioinformatics

Abstract

The emergence of β-lactamase–producing Gram-negative bacteria represents a major global challenge due to increasing resistance to β-lactam antibiotics. In this study, we performed in silico structural and functional prediction of a newly identified β-lactamase protein sequence obtained from a Gram-negative bacterial isolate. Homology modeling was used to construct a reliable 3D model of the protein based on structurally resolved β-lactamases. The model was further evaluated using stereochemical validation parameters. Molecular docking was conducted to assess binding affinity and interaction patterns between the predicted β-lactamase and clinically relevant β-lactam antibiotics, including ampicillin, cefotaxime, and imipenem. The results revealed conserved catalytic residues typical of class A β-lactamases, strong binding affinities toward penicillin and cephalosporin substrates, and key hydrogen bond interactions within the active site. This study provides a structural framework for understanding the function of the new β-lactamase and offers insights for developing β-lactamase inhibitors targeting resistant Gram-negative pathogens.

Bahasa Abstract

Kemunculan bakteri Gram-negatif penghasil β-laktamase merupakan tantangan global utama karena meningkatnya resistensi terhadap antibiotik β-laktam. Dalam studi ini, kami melakukan prediksi struktural dan fungsional secara in silico terhadap sekuens protein β-laktamase yang baru diidentifikasi yang diperoleh dari isolat bakteri Gram-negatif. Pemodelan homologi digunakan untuk membangun model 3D protein yang andal berdasarkan β-laktamase yang strukturnya telah ditentukan. Model tersebut selanjutnya dievaluasi menggunakan parameter validasi stereokimia. Penambatan molekuler dilakukan untuk menilai afinitas pengikatan dan pola interaksi antara β-laktamase yang diprediksi dan antibiotik β-laktam yang relevan secara klinis, termasuk ampisilin, sefotaxim, dan imipenem. Hasilnya menunjukkan residu katalitik yang terkonservasi yang khas untuk β-laktamase kelas A, afinitas pengikatan yang kuat terhadap substrat penisilin dan sefalosporin, dan interaksi ikatan hidrogen utama di dalam situs aktif. Studi ini menyediakan kerangka struktural untuk memahami fungsi β-laktamase baru dan menawarkan wawasan untuk mengembangkan inhibitor β-laktamase yang menargetkan patogen Gram-negatif resisten.

References

1.        World Health Organization Global Antimicrobial Resistance Surveillance System (GLASS) Report 2021; 2021;

2.        Lakshmi, R.; Nusrin, K.; Georgy, S.; Sreelakshmi, K. Role of Beta Lactamases in Antibiotic Resistance: A Review. INTERNATIONAL RESEARCH JOURNAL OF PHARMACY 2014, 5, 37–40, doi:10.7897/2230-8407.050207.

3.        Mathers, A.J.; Peirano, G.; Pitout, J.D.D. The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clin Microbiol Rev 2015, 28, 565–591, doi:10.1128/CMR.00116-14.

4.        Glen, K.A.; Lamont, I.L. β-Lactam Resistance in Pseudomonas Aeruginosa: Current Status, Future Prospects. Pathogens 2021, 10, doi:10.3390/pathogens10121638.

5.        Meng, Y.; Zhang, Z.; Zhou, C.; Tang, X.; Hu, X.; Tian, G.; Yang, J.; Yao, Y. Protein Structure Prediction via Deep Learning: An in-Depth Review. Front Pharmacol 2025, 16, 1498662, doi:10.3389/fphar.2025.1498662.

6.        Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular Docking as a Tool for the Discovery of Molecular Targets of Nutraceuticals in Diseases Management. Sci Rep 2023, 13, 13398, doi:10.1038/s41598-023-40160-2.

7.        Simner, P.J.; Pitout, J.D.D.; Dingle, T.C. Laboratory Detection of Carbapenemases among Gram-Negative Organisms. Clin Microbiol Rev 2024, 37, e0005422, doi:10.1128/cmr.00054-22.

8.        Spyrakis, F.; Celenza, G.; Marcoccia, F.; Santucci, M.; Cross, S.; Bellio, P.; Cendron, L.; Perilli, M.; Tondi, D. Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi Metallo-β-Lactamase-1. ACS Med Chem Lett 2018, 9, 45–50, doi:10.1021/acsmedchemlett.7b00428.

9.        Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular Diversity of Extended-Spectrum β-Lactamases and Carbapenemases, and Antimicrobial Resistance. J Intensive Care 2020, 8, 13, doi:10.1186/s40560-020-0429-6.

10.      Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev 2010, 74, 417–433, doi:10.1128/MMBR.00016-10.

11.      Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res2018, 46, W363–W367, doi:10.1093/nar/gky473.

12.      Hatzisarantinos, T.; Mansour, E.; Du, J.J.; Fares, M.; Hibbs, D.E.; Groundwater, P.W. Structural Insights into the Activity of Carbapenemases: Understanding the Mechanism of Action of Current Inhibitors and Informing the Design of New Carbapenem Adjuvants. RSC Med Chem 2025, doi:10.1039/D5MD00732A.

13.      Lu, S.; Montoya, M.; Hu, L.; Neetu, N.; Sankaran, B.; Prasad, B.V.V.; Palzkill, T. Mutagenesis and Structural Analysis Reveal the CTX-M β-Lactamase Active Site Is Optimized for Cephalosporin Catalysis and Drug Resistance. J Biol Chem 2023, 299, 104630, doi:10.1016/j.jbc.2023.104630.

14.      Bastidas-Caldes, C.; Romero-Alvarez, D.; Valdez-Vélez, V.; Morales, R.D.; Montalvo-Hernández, A.; Gomes-Dias, C.; Calvopiña, M. Extended-Spectrum Beta-Lactamases Producing Escherichia Coli in South America: A Systematic Review with a One Health Perspective. Infect Drug Resist 2022, Volume 15, 5759–5779, doi:10.2147/IDR.S371845.

15.      Lee, H.; Park, H.; Kwak, K.; Lee, C.; Yun, J.; Lee, D.; Lee, J.H.; Lee, S.H.; Kang, L.-W. Structural Comparison of Substrate-Binding Pockets of Serine β-Lactamases in Classes A, C, and D. J Enzyme Inhib Med Chem 2025, 40, doi:10.1080/14756366.2024.2435365.

16.      Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev 2020, 33, doi:10.1128/CMR.00047-19.

17.      Philippon, A.; Slama, P.; Dény, P.; Labia, R. A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016, 29, 29–57, doi:10.1128/CMR.00019-15.

18.      Song, Z.; Trozzi, F.; Palzkill, T.; Tao, P. QM/MM Modeling of Class A β-Lactamases Reveals Distinct Acylation Pathways for Ampicillin and Cefalexin. Org Biomol Chem 2021, 19, 9182–9189, doi:10.1039/D1OB01593A.

Share

COinS