Indonesian Journal of Medical Chemistry and Bioinformatics
Abstract
Graves' disease is an autoimmune disorder in which the CD40-CD154 interaction plays a critical role in T-cell activation. In this study, in silico methods were employed to analyze the binding interactions of quinoline-benzoic acid derivatives (NSB, FSB, and NQB) with the CD40 receptor and to investigate the implications of specific CD40 mutations for drug efficacy. In this reseach conducted by molecular simulation approach with molecular docking Results Mutation analysis of CD40 identified alterations in key residues, such as R203C, which may impact ligand-independent activation and downstream TRAF binding, crucial for signal transduction. These findings highlight the therapeutic potential of quinoline-benzoic acid derivatives for targeting CD40 in Graves' disease, particularly in the context of receptor mutations. The integration of molecular docking, mutation analysis, and pharmacokinetic profiling provides a comprehensive framework for designing effective CD40-targeted therapies.
Bahasa Abstract
Graves' Disease adalah kelainan autoimun di mana interaksi CD40-CD154 memainkan peran penting dalam aktivasi sel T. Dalam penelitian ini, metode in silico digunakan untuk menganalisis interaksi pengikatan turunan asam kuinolin-benzoat (NSB, FSB, dan NQB) dengan reseptor CD40 dan untuk menyelidiki implikasi mutasi CD40 spesifik terhadap kemanjuran obat. Dalam penelitian ini dilakukan dengan pendekatan simulasi molekuler dengan docking molekul. Hasil Analisis mutasi CD40 mengidentifikasi perubahan pada residu utama, seperti R203C, yang dapat berdampak pada aktivasi independen ligan dan pengikatan TRAF hilir, yang penting untuk transduksi sinyal. Temuan ini menyoroti potensi terapeutik turunan asam kuinolin-benzoat untuk menargetkan CD40 pada penyakit Graves, khususnya dalam konteks mutasi reseptor. Integrasi docking molekuler, analisis mutasi, dan profil farmakokinetik memberikan kerangka kerja komprehensif untuk merancang terapi bertarget CD40 yang efektif.
References
- Kahaly, G.J.; Olivo, P.D. Graves' disease. N Engl J Med, 2017, 376(2):184.
- Smith, T.J.; Hegedus, L. Graves' disease. N Engl J Med, 2016, 375(16):1552–1565.
- Ross, D.S. Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L. et.al. American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxi-cosis. Thyroid, 2016, 26(10):1343–1421.
- Bartalena, L.; Burch, H.B.; Burman, K.D.; Kahaly, G.J. A 2013 European survey of clinical practice patterns in the management of Graves' disease. Clin Endocrinol (Oxf), 2016, 84(1):115–120.
- Vargas-Uricoechea, H. Molecular mechanisms in autoimmune thyroid disease. Cells, 2023, 12(6). https://www.ncbi.nlm.nih.gov/pubmed/36980259
- Kahaly, G.J. Management of Graves thyroidal and extrathyroidal disease: An update. J Clin Endocrinol Metab, 2020, 105(12):3704-3720. https://www.ncbi.nlm.nih.gov/pubmed/32929476
- Burch, H.B.; Cooper, D.S. ANNIVERSARY REVIEW: Anti-thyroid drug therapy: 70 years later. Eur J Endocrinol, 2018, 179(5):R261-R274. https://www.ncbi.nlm.nih.gov/pubmed/30320502
- Cojocaru, M.; Cojocaru, I.M.; Silosi, I. Multiple autoimmune syndrome. Maedica (Bucur), 2010, 5(2):132-134. https://www.ncbi.nlm.nih.gov/pubmed/21977137
- Kahaly, G.J.; Bartalena, L.; Hegedus, L.; Leenhardt, L.; Poppe, K.; Pearce, S.H. European Thyroid Association guideline for the management of Graves' hyperthyroidism. Eur Thyroid J, 2018, 7(4):167–186.
- Hwang, C.J.; Afifiyan, N.; Sand, D.; Naik, V.; Said, J.; Pollock, S.J.; Chen, B.; Phipps, R.P.; Goldberg, R.A.; Smith, T.J.; Douglas, R.S. Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest Ophthalmol Vis Sci, 2009, 50(5):2262–2268.
- Tomer, Y.; Concepcion, E.; Greenberg, D.A. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease. Thyroid, 2002, 12(12):1129–1135.
- Jacobson, E.M.; Huber, A.K.; Akeno, N.; Sivak, M.; Li, C.W.; Concepcion, E.; Ho, K.; Tomer, Y. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated auto-immune conditions: the role of CD40 tissue-specific expression. Genes Immun, 2007, 8(3):205–214.
- Huber, A.K.; Finkelman, F.D.; Li, C.W.; Concepcion, E.; Smith, E.; Jacobson, E.; Latif, R.; Keddache, M.; Zhang, W.; Tomer, Y. Genetically driven target tissue overexpression of CD40: a novel mechanism in autoimmune disease. J Immunol, 2012, 189(6):3043–3053.
- Wang, D.; Chen, J.; Zhang, H.; Zhang, F.; Yang, L.; Mou, Y. Role of different CD40 polymorphisms in Graves' disease and Hashimoto's thyroiditis. Immunol Invest, 2017, 46(6):544–551.
- Wieczorek, G.; Bigaud, M.; Pfister, S.; Ceci, M.; McMichael, K.; Afatsawo, C.; Hamburger, M.; Texier, C.; Henry, M.; Cojean, C.; Erard, M.; Mamber, N.; Rush, J.S. Blockade of CD40-CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjogren's syndrome. Ann Rheum Dis, 2019, 78(7):974–978.
- Vos, X.G.; Endert, E.; Zwinderman, A.H.; Tijssen, J.G.; Wiersinga, W.M. Predicting the risk of recurrence before the start of antithyroid drug therapy in patients with Graves' hyperthyroidism. J Clin Endocrinol Metab, 2016, 101(4):1381–1389.
- Faustino, L.C.; Kahaly, G.J.; Frommer, L.; et al. Precision medicine in graves’ disease: CD40 gene variants predict clinical response to an anti-CD40 monoclonal antibody. Front Endocrinol (Lausanne), 2021, 12:691781. https://www.ncbi.nlm.nih.gov/pubmed/34149627
- Ristov, J.; Espie, P.; Ulrich, P.; Sickert, D.; Flandre, T.; Dimitrova, M.; Muller-Ristig, D.; Weider, D.; Robert, G.; Schmutz, P.; Greutmann, B.; Cordoba-Castro, F.; Schneider, M.A.; Warncke, M.; Kolbinger, F.; Cote, S.; Heusser, C.; Bruns, C.; Rush, J.S. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am J Transplant, 2018, 18(12):2895–2904.
- Cordoba, F.; Wieczorek, G.; Audet, M.; Roth, L.; Schneider, M.A.; Kunkler, A.; Stuber, N.; Erard, M.; Ceci, M.; Baumgartner, R.; Apolloni, R.; Cattini, A.; Robert, G.; Ristig, D.; Munz, J.; Haeberli, L.; Grau, R.; Sickert, D.; Heusser, C.; Espie, P.; Bruns, C.; Patel, D.; Rush, J.S. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion. Am J Transplant, 2015, 15(11):2825–2836.
- Kawai, T.; Andrews, D.; Colvin, R.B.; Sachs, D.H.; Cosimi, A.B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med, 2000, 6(2):114.
- Latif, R.; Davies, T.F. 2-aryl-4-quinolinecarboxamide derivatives for treating thyroid diseases. 2015.
- Neumann, S.; Eliseeva, E.; McCoy, J.G.; Napolitano, G.; Giuliani, C.; Monaco, F.; Huang, W.; Gershengorn, M.C. A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor. The Journal of Clinical Endocrinology and Metabolism, 2011, 96(2):548-554. doi: 10.1210/JC.2010-1935
- De Oliviera, L.M.; Silva, C.P.; de Oliveira, L.C.M.; David, T.M.; Bittencourt, A.M.V.; de Oliveira, G.C.M. Graves' Disease: In Silico Design of Hybrid Molecule Targeting the Thyroid-stimulating Hormone Receptor. 2024. doi: 10.21203/rs.3.rs-4220125/v1
- Bugnon, M.; Röhrig, U.F.; Goullieux, M.; Perez, M.A.S.; Daina, A.; Michielin, O.; Zoete, V. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024.
- Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: improving the flexibility and robustness for small-molecule docking. J. Chem. Inf. Model., 2023
- Kłosińska-Szmurło, E.; Grudzień, M.; Betlejewska-Kielak, K.; Pluciński, F.; Biernacka, J.; Mazurek, A.P. Physicochemical properties of lomefloxacin, levofloxacin, and moxifloxacin relevant to the biopharmaceutics classification system. Acta Chimica Slovenica, 2014, 61(4):827-834.
- Breznica-Selmani, P.; Mladenovska, K.; Dräger, G.; Mikhova, B.; Panovski, N.; Kaftandzieva, A.; Kavrakovski, Z.; Hoxha, A.; Sheqerxhiu, N.; Jurhar, M.P.; Popovski, E. Synthesis, physicochemical characterization and antibacterial activity of novel (benzoylamino)methyl derivatives of quinolones. Macedonian Journal of Chemistry and Chemical Engineering, 2016, 35(2):179-197. doi: 10.20450/MJCCE.2016.919
- Davis, A.M.; Leeson, P.D. in The Handbook of Medicinal ChemistryPrinciples and Practice; Ward, S.E.; Davis, A. The Royal Society of Chemistry, 2nd edn, 2023, ch. 1, pp. 1-39.
- Waterbeemd, H. Physicochemical concepts in drug design. Modern Methods of Drug Discovery, 2003, 243-257. doi: 10.1007/978-3-0348-7997-2_12
- Bojadzic, D.; Chen, J.; Alcazar, O.; Buchwald, P. Design, synthesis, and evaluation of novel immunomodulatory small molecules targeting the cd40⁻cd154 costimulatory protein-protein interaction. Molecules, 22018, 3(5):1153-. doi: 10.3390/MOLECULES23051153
- Kumar, P.; Uthaiah, C.A.; Mahantheshappa, S.S.; Satyanarayan, N.D.; Madhunapantula, S.; Kumar, H.S.S.; Achur, R.N. Antiproliferative potential, quantitative structure-activity relationship, cheminformatic and molecular docking analysis of quinoline and benzofuran derivatives. European Journal of Chemistry, 2020, 11(3):223-234. doi: 10.5155/EURJCHEM.11.3.223-234.2004
- Ganesan, L.; Vidovic, D.; Schürer, S.C.; Buchwald, P. Exploratory computational assessment of possible binding modes for small molecule inhibitors of the CD40-CD154 co-stimulatory interaction. Die Pharmazie, 2012, 67(5):374-379. doi: 10.1691/PH.2012.1696
- Barbara, Z.; Tom, S.; Nabuurs, S.B.; Ritschel, T.; Grommes, J.; Soehnlein, O. et al. Discovery of small molecule CD40–TRAF6 inhibitors. Journal of Chemical Information and Modeling, 2015, 5(2):294-307. doi: 10.1021/CI500631E
Recommended Citation
Yunaini, Luluk; Kristanty, Diyah; Sari, Puji; Dwira, Surya; Suryandari, Dwi Anita; and Bustami, Arleni
(2025)
"In Silico Analysis of CD40 Mutations and Their Implications for Quinoline-benzoic acid derivatives Based Therapy in Graves' Disease,"
Indonesian Journal of Medical Chemistry and Bioinformatics: Vol. 3:
No.
2, Article 2.
DOI: 10.7454/ijmcb.v3i1.1040
Available at:
https://scholarhub.ui.ac.id/ijmcb/vol3/iss2/2